
  

  

Abstract—The development of intelligent ambulatory 
monitoring systems and smart living environments is 
important when considering the aging of society and its 
implications. This work concerns the use of human motion 
analysis as a tool for supporting elderly life. Movement 
recognition has so far been achieved through some form of 
template matching after manual segmentation or modeling of 
important features. However, previous works have failed to 
generalize movement and have only been able to recognize 
few predetermined activities. To cope with those limitations, 
this work suggests a new “motion language” approach. To 
demonstrate the viability and usefulness of this methodology, 
the concept of “motion primitives” was used to quantitatively 
analyze gait unsteadiness, which relates to physical condition 
and cognitive performance. The variability of stride time and 
temporal walk symmetry between the two feet were 
measured. Accelerometers were chosen as motion sensors 
since they offer desirable features in monitoring human 
movements such as response to both movement frequency 
and intensity, miniaturization and low power consumption. 
This study shows that a motion language methodology is 
capable of quantitatively measuring temporal gait 
characteristics and providing tools for continuous, 
unobtrusive, home-based gait analysis. 

I. INTRODUCTION 
HE rapid aging of Europe's population poses new 
problems to be addressed in the near future. Today, 

about 16% of the population in Europe is aged 65 or over 
according to the United Nations Population Division [1]. 
Projections show (Fig.1) that this number will have 
surpassed 27% by 2050. The increased number of elders 
will exert great pressure on the health care system to treat 
age-related problems. The percentage of economically 
productive individuals will subsequently decrease. To 
cope with limitations in available resources, the traditional 
health care system must shift its attention from medical 
facilities to patient-centered, pro-active medical 
assistance. 

Besides softening the demands on the health-care 
system, enabling comfortable aging at home brings 
benefits to the patient and his family. The safety of the 
elder at home must be guaranteed by intelligent activity 
monitoring and sharing relevant information with informal 
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care-takers, such as family members and friends, as well 
as with medical personnel. The detection and classification 
of movements is a powerful and intuitive way of 
determining the subject's health and functional status [2]. 
This work focuses on one particular activity, gait, which is 
an indicator of physical and cognitive decline in 
performance [3].  

Several studies have focused on movement recognition 
for classifying gait [4] and evaluating balance [5]. These 
studies, however, have been based on template matching 
techniques and have been limited to detecting only a few 
predetermined activities or events. Our work presents a 
movement recognition technique based on decomposing 
an activity into elementary building blocks called “motion 
primitives”. This methodology contributes to current 
research efforts by being able to generalize movements 
and provide higher level interpretations. The motion 
primitives may be organized into a “motion language” 
capable of describing innumerable movements from a 
limited number of primitives.  

In order to demonstrate the viability and usefulness of 
the motion language methodology, this work analyzes gait 
unsteadiness from motion primitives. The variability of 
stride time and the temporal walk symmetry between the 
two feet were chosen as relevant parameters (Section II). 

This document is organized as follows. The importance 
of gait analysis and related work is discussed in Section II. 
Favorable aspects of using accelerometers to analyze 
human movement, as well as relevant previous works in 
the area, are presented in Section III. The concept of 
motion language will be detailed in Section IV. Section V 
presents arguments on creating such motion language 
from accelerometer signals. Section VI presents a first 
study of gait unsteadiness from motion primitives. Section 
VII discusses different possible applications for this 
methodology. Finally, Section VIII concludes this paper. 
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Fig.1. Percentage of population aged 65 or over in Europe. 



  

II. GAIT ANALYSIS 
Gait is an important indicator of physical and cognitive 

condition. There is evidence that changes in gait are 
related to physical and cognitive decline due to aging [7] 
or illness [8]. In addition, it may help identify and quantify 
the risk of and elderly falling [6] and is an essential tool in 
the treatment of, for example, cerebral palsy [9]. 

Gait analysis is most commonly done by visual 
observation, which is subjective and depends on the clinic 
skills of the observer. A low-tech tool used to improve this 
assessment is videotaping the exam so that the clinician 
may take a more detailed look at the patient's walking 
pattern. In this scenario, the important gait parameters, 
such as stride time and walking speed, are measured with 
a stop watch, tape measure and the occasional talcum 
powder [10]. Nowadays, however, motion capture 
(mocap) systems combined with ground-force plates 
provide accurate description of gait patterns [11]. The 
drawback with this technology is that the required 
equipment is expensive and must be fit into an appropriate 
room, limiting its application.  

Ideally, gait measurement systems should be easy to 
use, unobtrusive and mobile, to allow long term 
monitoring of the patient in uncontrolled environments. 
For that, sensors such as accelerometers and gyros are 
useful [12]. We chose to work with only accelerometers 
because of their low power consumption, which helps 
extend the battery life of our sensor nodes. The following 
section elaborates on human motion analysis systems 
based on accelerometers. 

III. ACCELEROMETERS 
Current enhancements in micro-electro-mechanical 

systems (MEMS) technology have made possible the 
manufacture of miniaturized, low cost accelerometers 
[12], good for harvesting human motion information for 
long periods of time and in uncontrolled environments. 

Although accelerometers do not restrict the subject’s 
movements, a downside of their mobility is that 
considerable thought must be put into the development of 
the sensor nodes. Communication, power supply and 
processing power are some of the issues to be considered. 

When compared to video images, the accelerometer 
data provides localized information. In order to construct a 
model such as done from mocap systems, several 
accelerometers and gyroscopes over articulated parts of 
the body are needed. However, a large number of sensors 
is inconvenient for most long term monitoring 
applications. The analysis of accelerometer signals is, 
therefore, less intuitive. Nonetheless, accelerometers have 
been employed for many different purposes. Studies have 
been performed in which accelerometers were used to 
assess, among others, metabolic energy expenditure [14], 
physical activity [15], standing balance [5], fall detection, 
postural orientation and activity classification [2].  

One work has studied the classification of gait patterns 
using data obtained from a tri-axial accelerometer. This 
study proposed a Gaussian Mixture Model (GMM) based 
classifier. One GMM per walking pattern was used to 

describe the following 5 patterns: flat, down slope, up 
slope, down stairs and up stairs [4]. Gait analysis often 
takes advantage of the fact that walking is a repetitive, 
predictable activity. The drawback of this work was 
limited scalability; every new pattern of interest would 
require a new GMM.  

The following section elaborates on the concept of 
“motion language” and its advantages when compared to 
traditional movement classification techniques. 

IV. MOTION LANGUAGE 
A fundamental problem in detecting and recognizing 

human action is one of representation. Movement 
detection and classification has been, traditionally, 
achieved through some form of template matching or 
pattern recognition after manual segmentation or modeling 
of the features considered important. These techniques 
depend on a large collection of training examples, and 
labeling is labor-intensive and error-prone [16]. To cope 
with these draw-backs, human activity can be decomposed 
into building blocks which belong to an “alphabet” of 
elementary actions [17]. This alphabet enables the creation 
of a “motion language” where analogies are made between 
movements and words. The relationship between action 
and language is supported by the Mirror Neuron Theory 
[18] which states that the same brain mechanisms are 
activated when actions are performed or observed [19].  

A motion language is able to generalize movement by 
describing innumerable concepts from different 
combinations of a limited number of primitives. The 
organization of elementary actions for classifying human 
movement by describing a hierarchical model has already 
been studied [20]. The concept of motion primitives was 
also explored focusing on automatically deriving 
vocabularies of motion modules from human motion data, 
taking advantage of the underlying spatial-temporal 
structure in motion [16]. Video image sequences have 
been converted into strings containing a sequence of 
symbols, each representing a manually determined 
primitive to classify five one-arm movements [21]. Also 
from video images (mocap database), the inference of 
sequential and parallel grammar rules to describe human 
movements has been studied [22].  

V. MOTION LANGUAGE FROM ACCELEROMETER SIGNALS 
Human motion studies from accelerometers, when 

compared to studies using visual data, present the 
following advantages: 

• Accelerometers can be configured into mobile, 
wireless, wearable systems, capable of recording 
information independent of location; 

• Accelerometers consume very little power, therefore 
providing long term power autonomy for such 
mobile systems; 

• People feel camera-like devices invade their privacy; 
• The analysis of accelerometer signals may profit 

from analysis and processing techniques developed 
by other research areas such as speech recognition.  

For the above mentioned reasons, this work focuses on 



  

the creation of a motion language from accelerometer 
signals. In order to successfully create this language, four 
tasks must be taken into consideration: 

A. Segmentation 
One of the greatest challenges in the process is finding 

the best way to segment the signal in order to convey 
relevant information. Ideally, the signal should be 
segmented according to its innate characteristics. An 
algorithm should be developed in order to detect repeating 
patterns that are, in turn, not composed of smaller patterns. 
A previous work made use of angular displacement and 
first-derivative signs to segment signals into primitives 
[22], but this is only one way of characterizing the signal, 
and it may not be the best one. Another work considered 
the variance characteristics of the signal [23] but the 
segmentation achieved was coarse and only worked when 
the movements involved maneuvering objects. 

B. Feature Extraction 
After segmentation, various features extracted from each 

segment of the signal are used to classify them into 
different symbols. The most common approach when 
detecting daily activities from accelerometer is to extract 
information from equally sized sliding windows. This 
does not take primitives into consideration but rather 
statistical information about the whole movement. For the 
purpose of creating a motion language, these features may 
be chosen with respect to their variability across the whole 
of the segments. The larger the variability, the better the 
symbols will be represented by this feature.  

C. Symbol Assignment 
The features extracted from each segment are used to 

differ one segment from another. Segments with similar 
characteristics may be assigned one symbol. These 
symbols may be compared to letters in the alphabet. They 
will be used to construct “words” and “sentences”. 

D. Grammar Rules 
The grammar rules should express how symbols may be 

put together to form words and sentences that convey 
motion concepts. They may be inferred from a large 
collection of data. Although segmentation, feature 
extraction and symbol assignment may not relate directly 
to the physical movements, the physical limitations of our 
body should be reflected on these rules on syntactic and 
semantic levels. Syntactic analysis is concerned with 
deriving rules about which movements are possible, such 
as “our arms only bend one way.” Semantic analysis 
considers rules about how different movements are 
associated. We can not, for example, “chew gum and 
whistle at the same time.” The elaboration of these 
grammar rules from mocap data has been explored by 
Guerra-Filho et al. [22].  

VI. STUDY: GAIT UNSTEADINESS ANALYSIS 
The work presented here is a study of the requirements 

and capabilities of the motion language methodology. It 
aims at demonstrating the viability and usefulness of the 

method by finding simple solutions to the four tasks 
explained in Section V (segmentation, feature extraction, 
symbol assignment and grammar inference) for motion 
analysis.  

A. Method 
The goal of this study was to quantitatively analyze gait 

unsteadiness by finding measures of variability in stride 
time and temporal walk symmetry between the two feet. 
The data was acquired with two sensor nodes with serial-
communication capabilities, each consisting of a tri-axial 
accelerometer, a PIC processor and an external memory 
(Fig.2). The sensor nodes were placed inside the sole of a 
pair of running shoes at the heel. 

 
Fig. 2. One sensor node used to acquire gait data. It is composed of a tri-
axial accelerometer, a PIC processor and an external memory, with serial-
communication capabilities. 

The acquired data corresponds to one person’s three 
different walking patterns: normal speed walking, slow 
walking and limping (simulated by immobilizing the 
subject’s right knee); sampled at 25Hz. Each data set 
corresponds to approximately 3 minutes of walking. The 
very beginning and end of each data set were excluded in 
order to consider only the more stable gait cycles. The 
approximate number of steps analyzed for each walking 
pattern is presented in Table I. 

Table I. Approximate number of steps used for gait analysis. 

 Normal walk Slow walk Limp walk 

No. of steps 175 142 85 

In this study, only the accelerations along the y (Accy) 
and z (Accz) axes were considered in the analysis for 
simplification purposes, since the walking circuit was 
circular. Therefore, throughout the paper, resultant 
acceleration refers to sqrt(Accy

2 + Accz
2), unless specified 

otherwise. 
The segmentation of the resultant acceleration was 

performed with a bottom-up linear segmentation approach, 
as described by Keogh et al. [24]. The features extracted 
from each linear segment were: a measure of variability 
along the y axis, r; the tangent of the angle between the 
segment and the horizontal plane, α; average acceleration 
along the y axis, Accy; and average acceleration along the z 
axis, Accz. These features were used to k-means cluster the 
segments into three groups (symbols), represented by 
numbers 1 through 3. Three symbols were used because 
they were the smallest number of symbols that could be 
used to satisfactorily analyze the data. Figure 3 
exemplifies the correspondence between the symbols and 
the resultant acceleration for the normal speed walking 
data. The centers of the clusters found for the normal 
speed walking data are presented in Table II. 



  

 
Fig. 3. Example of the correspondence between the symbols and the 
resultant acceleration for normal speed walking. Sampling rate: 25Hz.  

Table II. Centers of clusters for normal speed walking data.  
Feature 

Cluster α r Accy Accz 
1 -0.1253 0 0.0682 0.2507 
2 0.0176 1 -0.0124 -0.0010 
3 0.3978 1 0.0036 0.1545 

Where r is a measure of variability along the y axis (1=below 0.5); α is 
the tangent of the angle between the segment and the horizontal plane; 
Accy is the average acceleration along the y axis; and Accz is the average 
acceleration along the z axis for each segment. 

After assigning symbols to the segments, the raw data 
can be represented by strings of three symbols. The next 
task was to understand how these symbols relate to one 
another and how they can be used to derive temporal gait 
measurements. One simple way of representing the 
dynamic relationship of symbols is to consider a transition 
matrix, where element (i,j) is the probability with which a 
symbol i is followed by a symbol j. The transition matrix 
for the normal speed walking data is presented in Table 
III. These transitions can be, in turn, represented by other 
symbols. The codebook in Table IV assigns letters to 
transitions in order of decreasing occurrence. 

Table III. Transition matrix for normal speed walking data. 
To 

From 1 2 3 
1 0.70 0.24 0.06 
2 0.10 0.68 0.22 
3 0.79 0.04 0.17 

Where element (i,j) is the probability with which a symbol i is followed 
by a symbol j. 

Table IV. Codebook for normal speed walking data. 
To 

From 1 2 3 
1 A C G 
2 F B E 
3 D I H 

Where letters are assigned to transitions in order of decreasing 
occurrence. 

By visually analyzing Fig.4, one can identify a 
repeating stride cycle that starts with a transition D. The 
stride time was, therefore, determined by calculating the 
time elapsed between two such transitions and computing 
the most frequent values around the expected stride time 
(1s).  

The temporal symmetry between the two feet, SI, was 
estimated by how similar the stride times were (1) [25],  

 

where TR is the average stride time for the right foot and 
TL is the average stride time for the left foot. The 
variability in stride time was estimated by the standard 
deviation of stride time for each foot.  

 
Fig. 4. Symbolic representation of normal speed walking data. Notice that 
there is a transition from symbol 3 to 1 (transition D) when a stride cycle 
begins. Sampling rate: 25Hz. 

B. Results 
The values found for the normal and slow walking data 

are presented as histograms in Fig.5 and Fig.6, 
respectively. According to the chosen measures, there is 
great symmetry between the two feet for both normal 
speed and slow walking. The variability of stride time is 
greater for slow walking than for normal speed walking. 
This is explained by the fact that the subject experienced a 
decrease in balance when walking slowly and had to make 
a conscious effort to keep a steady walking speed.  

 
Fig. 5. Histogram of stride time, in seconds, for normal speed walking 
data. Approximately 40% of total data. 

 
Fig. 6. Histogram of stride time, in seconds, for slow walking data. 
Approximately 38% of total data. 

Although a repetitive cycle could be detected in the 
limp walking symbolic data (Fig.8), the same method was 
insufficient to determine the limp walking speed because 

(1) 



  

there were no expressive peaks in the stride time 
histogram. The asymmetry of the limp walk is well seen in 
Fig.7 and Fig.8.  

 
Fig. 7. Histogram of stride time, in seconds, for limp walking data. 

 
Fig.8. Autocorrelation of symbolic data for the limp walking data. 
Notice there are repetitive cycles of symbols for both feet but the cycles 
could not be detected in the same manner as for the normal walking and 
slow walking data. 

Besides peaks of recurrent stride times around the 
expected walking speeds, two other unexpected peaks 
appeared in the histograms (Fig.9). The transition D also 
occurred at one other moment within the stride cycle. In 
order to fully understand the relationship between symbols 
and temporal gait measurements, the accelerometer data 
was compared to mocap data of the same subject walking 
at normal speed. Stance and swing are clearly identified in 
Fig.10. By analogy, the swing and stance phases were 
determined for the accelerometer data as exemplified in 
Fig.11.  

 
Fig. 9. Occurrence of transition D within the stride cycle. Example taken 
from normal speed walking data. 

The two unexpected peaks in the histogram of 
transitions D (one around 0.3s and the other around 0.7s) 
do not correspond directly to swing and stance. However, 
the similarity between the two histograms provides 
information about the temporal symmetry between the 
feet. The same is true for all other symbol transitions. A 

measure of temporal gait symmetry may be derived from 
the transition histograms as follows (2),  

 
where nj is the number of non-empty histogram bins for 
transition j; hRj is the normalized transition j histogram for 
the right foot; and hLj is the normalize transition j 
histogram for the left foot.  

 
Fig. 10. Mocap data of resultant acceleration (x, y, and z axis) and 
position along the vertical axis. The swing and stance phases are well 
defined. 

 
Fig. 11. Identification of swing and stance phases by comparison with 
mocap data. 

The transition symmetry index, SItran; gait symmetry 
index, SI; mean and standard deviation, std, of stride time 
for normal, slow and limp walking are presented in Table 
V. Notice that for SI and SItran the lower the absolute 
value, the greater the symmetry. The negative value of SI 
indicates that the stride time is greater for the left foot. The 
SItran index may range from 0, complete similarity; to 1, 
no similarity. Its value is, therefore, easier to interpret than 
the traditional SI and it may be calculated independent of 
stride time. 

Table V. Overview of results 
Normal walk Slow walk Limp walk  

right left right left right left 
mean (s) 1.0218 1.076 1.3422 1.3692 x x 

std (s) 0.0366 0.0385 0.099 0.1254 x x 
SI 0.4119 -1.9916 x 

SItran 0.1711 0.3304 0.6860 

VII. DISCUSSION 
This work focused on using motion primitives to 

quantitatively analyze gait unsteadiness, though this 
methodology may be employed for different purposes.  

Consider the following divisions within the field of 

(2) 



  

movement analysis: positioning, when an object is tracked 
through space; posture, when the static posture of and 
object is determined; and dynamics, when dynamic 
qualities of the movement are studied e.g. hand gesture 
classification. The motion-primitive based method 
presented here may find several applications in the latter 
group, such as ambulatory monitoring. 

In addition, this method may be applied to different 
sensor signals, from biometric data such as ECG to 
seismographic data. This method is then able to analyze 
information about a human subject as well as information 
about different events happening in a certain environment. 
The symbolic representation derived in this method is also 
an effective way of compressing data.  

VIII. CONCLUSION 
The future demographic changes in the elder population 

will exert pressure on the health care system to treat age-
related problems. One way to cope with this is to provide 
intelligent monitoring systems to assist comfortable and 
safe aging at home. A powerful feature for these systems 
is the ability to recognize and classify human movements. 

Most of the research efforts put into detecting and 
classifying human movements have so far lacked the 
ability to generalize motion. Clustering and template-
matching techniques are only suitable for detecting few, 
particular movements. To overcome this problem, the idea 
of motion primitives was brought forth. This work 
discussed the viability of deriving a motion language from 
accelerometer signals to quantitatively analyze gait 
unsteadiness. A bottom-up linear approach was used for 
segmentation. The features extracted from each segment 
were: variability along the y axis; the tangent of the angle 
between the segment and the horizontal plane; average 
acceleration along the y axis; and average acceleration 
along the z axis. These features were used to cluster the 
segments into 3 symbols. The symbols were used to 
determine stride time, variability in stride time and 
temporal symmetry between the two feet. 

This first study shows that simple techniques may 
perform the tasks required for the creation of a motion 
language capable of describing temporal gait 
measurements. A more detailed study of segmentation 
techniques will be carried out in order to improve the 
performance of the method and provide accurate tools for 
continuous, unobtrusive, motion analysis. 
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