
  

 

Abstract—Video is a rich source of information that can be 
used to passively monitor the activity of elders.  The amount 
of information contained in video is significantly greater than 
other sensing technologies such as RFID tags and motion 
sensors.  Privacy of residents is preserved by not using the 
raw video, but instead,  extracting binary silhouette maps, 
which represent the pixels a person occupies in an image.  
Silhouettes acquired from multiple cameras viewing the same 
scene are used to build a three-dimensional object whose 
activity is linguistically summarized for activity monitoring.  
These linguistic summarizations are used for abnormal event 
detection, specifically for the automated detection of falls.  In 
this paper, we present three measures for system performance 
evaluation and discuss successes and difficulties in video-
based human activity recognition of falls. 

I. INTRODUCTION 
e are researching passive monitoring technologies 
for assisting elders with “aging in place”.  This 

includes adverse event detection from video for activities 
such as falls [1][2].  Privacy is preserved by not using the 
raw video, but extracting binary silhouette maps, which 
represent the pixels a person occupies in an image.  Focus 
groups at the “aging in place” facility of residential 
apartments known as TigerPlace [3] indicate that elderly 
residents are willing to consider silhouette-based images 
for abnormal event detection such as falls [4].   

A reliable video-based monitoring system must be able 
to discriminate between similar appearing activities, such 
as a subject on the floor stretching or sleeping versus 
having fallen.  While these tasks are often relatively simple 
for a human, they are extremely difficult for an automated 
system.  This is a high level computer vision and image 
understanding task that requires information about the 
context, temporal activity, and even inference about the 
mental and/or physical state of a subject.  We have 
designed a soft computing approach to human activity 
monitoring [5][2], in which knowledge is explicit and 
linguistic.  Rules for activity monitoring can be inserted, 
removed, and modified by domain experts, such as nurses, 
based on cognitive and/or physical information regarding 
each specific resident.  In addition, the system produces 
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linguistically summarized information in a natural 
language format that caregivers can utilize.   

In an eldercare context, false alarms can be expensive.  
A false alarm may result in an alert being generated, such 
as a fall, requiring the intervention of a caregiver.  Too 
many false alarms could result in a loss of trust, or worse, 
loss of use of the system.  However, missing a single fall is 
the worst case scenario.  Identifying an acceptable false 
alarm rate and understanding the conditions in which many 
false alarms occur is of vital use for the long term success 
of an automated system.  In this paper, we identify and 
evaluate three measures for the assessment of various types 
of information and fall classification in our video system.     

Martin et al. [6] presented a soft computing approach to 
monitoring the “well-being” of elders over long time 
periods from non-video sensors.  Procedures for 
interpreting firings from sensors into fuzzy summaries 
were presented.  These summaries assist in characterizing 
a resident‟s trends and aid in answering queries about 
deviations from patterns, such as “has the occupant‟s sleep 
pattern changed significantly in the past few months”. 

Thome and Miguet demonstrated a fall detection 
procedure that uses Hierarchical Hidden Markov Models 
(HHMM) [7].  The HHMM is hand designed and operates 
on an observation sequence of rectified angles.  Johnson 
and Sixsmith [8] used an infrared array technology to 
acquire a low resolution thermal image of the resident and 
they track the human using an elliptical-contour gradient-
tracking scheme.  Falls were detected using a neural 
network that took the vertical velocity of the person as 
input.  Their fall classification results were poor, only 
capturing around one-third of all falls.  However, no non-
fall scenarios resulted in a fall alert.     

II. LINGUISTIC SUMMARIZATION OF ACTIVITY  
Our first step in human activity analysis is silhouette 

extraction (shown in figure 1).  This is an image 
processing and computer vision classification task, in 
which the objective is to discover the pixels in the current 
image that belong to the human.  This is not a simple task 
and has been the subject of much research over the years 
[9][10].  Objects move in a scene, illumination changes 
occur, and shadows and other phenomenon such as 
reflections further complicate automated extraction.  Our 
silhouette extraction system is adaptive and fuses texture 
and color information [11].  The camera is assumed to be 
stationary and a background model is constructed.  As 
each new image is acquired, features are extracted and 
locations that do not belong to the background are 
identified and labeled as silhouette.     
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Fig. 1: Fall shown from two cameras monitoring the same scene.  White 
regions in the bottom two images, i.e. the silhouettes, are the human. 
 
In [5] we presented a robust method for the construction 

of a three-dimensional object, specifically a representation 
of the human called voxel person, from the back projection 
of silhouettes from multiple cameras viewing the same 
scene.  The environment is first partitioned into discrete 
regions, typically cubes, called volume elements (voxels).  
Each camera builds a list of voxels that intersect with its 
viewing volume, and the pixels from which a particular 
voxel is viewable are recorded.  Corresponding silhouettes, 
those with the closest time stamps, are acquired.  For each 
camera a new list is constructed, i.e. the set of all voxels in 
foreground regions, the silhouette.  The next step is the 
intersection of these new voxel lists, which results in voxel 
person.  The procedure is illustrated in figure 2. 
 

 
 

Fig. 2: Back projection of two-dimensional image plane silhouettes in 
three-dimensional space for voxel person construction.   

 
We use fuzzy logic for human activity analysis.  Fuzzy 

set theory, introduced by Lotfi A. Zadeh in 1965, is an 
extension of classical set theory [12].  One of the more 
well-known branches of fuzzy set theory is fuzzy logic, 

introduced by Zadeh in 1973 [13].  Fuzzy logic is a 
powerful framework for performing automated reasoning.  
An inference engine operates on rules that are structured in 
an IF-THEN format.  The IF part of the rule is called the 
antecedent, while the THEN part of the rule is called the 
consequent.  Rules are constructed from linguistic 
variables.  These variables take on the fuzzy values or 
fuzzy terms that are represented as words and modeled as 
fuzzy subsets of an appropriate domain.  An example is the 
fuzzy linguistic variable height of voxel person‟s centroid, 
a feature that is tracked and helps with determining when 
the subject is on the ground.  This variable can assume the 
terms low, medium, and high. 

Our first step in monitoring human activity from video 
involves acquiring confidences in the states of voxel 
person (e.g., upright, on-the-ground), a frame-by-frame 
decision process [5].  The current set of states (level one 
quantities that are later used to recognize activity) include: 
on-the-ground, upright, in-between, on-the-couch, and on-
the-chair [5][14], as described below.  
 

Upright: This state is generally characterized by voxel person 
having a large height, his centroid being at a medium height, and a 
high similarity of the ground plane normal with voxel person‟s primary 
orientation.  Activities that involve this state are, for example, 
standing, walking, and meal preparation. 

 
On-the-ground: This state is generally characterized by voxel 

person having a low height, a low centroid, and a low similarity of the 
ground plane normal with voxel person‟s primary orientation.  
Example activities include a fall and stretching on the ground. 

 
In-between: This state is generally characterized by voxel person 

having a medium height, medium centroid, and a non-identifiable 
primary orientation or high similarity of the primary orientation with 
the ground plane normal.  Some example activities are crouching, 
tying shoes, reaching down to pick up an item, sitting in a chair, and 
even trying to get back up to a standing stance after falling down.  

 
On-the-chair: This state is characterized by voxel person being on a 

chair.  Activities that involve this state are, for example, sitting on the 
chair and/or lying on the chair. 

 
On-the-couch: This state is more specific than on-the-chair.  It is 

generally characterized by voxel person being on a couch, having a 
low similarity with the ground plane normal, a high centroid height, 
and a high minimum height 
 
Our next step is linguistic summarization of this 

information and the recognition of specific activities, e.g., 
falls [2].  This second stage uses domain expert knowledge 
regarding activities to produce a confidence in the 
occurrence of an activity.  Rules allow for the recognition 
of common performances of an activity, as well as the 
ability to model special cases.  This framework also allows 
for rules to be added, deleted, or modified to fit each 
particular resident based on knowledge about their typical 
daily activities, physical status, cognitive status, and age.  
Our rules can evaluate as many linguistic summarizations 
as necessary, looking as far back in time as desired, 
making it possible to enforce longer-term specific 
performances of activities.  Figure 3 illustrates our activity 
recognition framework. 
 



  

 
 

Fig. 3: Activity recognition framework, which utilizes a hierarchy of 
fuzzy logic systems based on voxel person.  The first level is reasoning 
about the state of the individual.  Linguistic summarizations are 
produced and fuzzy logic is used again to reason about human activity. 
 

Decisions regarding the current activity can be made at 
each time step, but the result is too much information.  Our 
goal is to linguistically summarize the temporal activity of 
voxel person.  The objective is to take seconds, minutes, 
hours, and even days of resident activity and produce 
temporal linguistic summarizations, such as “the resident 
has fallen in the living room for a long time” or “the 
resident made and ate lunch shortly after noon”.  This is a 
situation in which less detail is more meaningful.  
Reporting activity for every frame results in information 
overload.  Linguistic summarization is designed to increase 
the understanding of the system output, reporting a 
reduced set of conditions that characterizes a time interval, 
and temporally describes the duration that voxel person 
was in a state or performed a particular activity.  The 
linguistic summarizations of voxel person‟s activity can 
help in informing nurses, residents, residents‟ families, and 
other approved individuals about the general welfare of the 
resident, as well as assist in an automated or manual form 
of determining potential cognitive or functional decline. 

III. FALL DETECTION 
All data was captured in the Computational Intelligence 

Laboratory at the University of Missouri-Columbia.  We 
do not have any elderly fall data and cannot acquire any 
because of the age of the individuals and the risk of injury.  
Because of this, fall data was captured in our lab using 
students as subjects.  The rule base for recognizing falls, 
validated by nurses, can be found in [2].  Features, 
described in [2][5][14], are extracted from voxel person 
and used in the rule base.  Example features used to reason 
about the state of voxel person include the height 
(indicates if the subject is on the ground) and a quick 
recent change in acceleration (looking for a quick change 
in speed at the beginning of a fall).  Figure 4 shows these 
two features for an example fall sequence and figure 5 
shows the automated decision making output.  

  
 

Fig. 4: Two features used to monitor the activity of voxel person.  (left) 
The statistical approximation of voxel person‟s height feature, which 
indicates whether the subject is on the ground or upright. (right) The 
change in acceleration of voxel person feature, which is one source of 

information that indicates a potential fall. 
 

 
 

 
Fig. 5: Activity sequence, same as figure 4, which consists of 3650 

frames (approximately 12 minutes using a capture rate of 5 fps).  The 
output of reasoning about the state of voxel person (level one of fuzzy 

inference) is plotted over the time/frame domain.  Labels indicate where 
the second level of fuzzy inference classified a fall.  This sequence 

contained three falls, all of which were correctly recognized.   

IV. SYSTEM EVALUATION METRICS 
The data set analyzed in this paper was manually hand 

segmented to acquire a ground truth for comparison 
against the automated systems results.  Only the activities 
that the system tracks were hand segmented.  The 
beginning and ending frames for each activity are 
identified.  There are multiple ways to evaluate the 
performance of the system given the ground truth and the 
outputs at each level of fuzzy inference.  The three metrics 
identified and evaluated here for this data set are:   
 

Metric 1: Matching between the frame-by-frame state 
decisions (according to the fuzzy state with the 
maximum membership value at each frame in the first 
level of fuzzy inference) and the frame-by-frame ground 
truth labels.  The human indicated the start and end time 
frames and all frames in this interval are automatically 
assigned the same label.   
 

Metric 2: Matching between linguistic summarizations 
produced by processing the first level of fuzzy inference 
results and the hand annotated data.  This measures how 
successful the summarization system is in terms of 
correspondence with what a human produced.  
However, this metric does not indicate how much the 
system summaries and the ground truth intervals 
overlap.  When the first and second metric are analyzed 



  

together, an understanding of how much the linguistic 
summarization and ground truth intervals overlap is 
possible.  This is important because falls need to be 
recognized in a timely manner.  For this metric, a zero 
score is the best.   

 

Metric 3: Matching between the fall detection produced 
by the second level of inference and when a fall 
occurred, as noted by the manual segmentation.  This is 
a measure evaluating the success of the second level of 
fuzzy inference.   

V. RESULTS 
The fall data set consists of eighteen sequences.  The 

camera capture rate was 3 fps and a total of 5512 frames 
were captured (approximately 30 minutes).  The two 
subjects walked around the room, stood still, kneeled, fell, 
and sat on the couch and the chair (example images are 
shown in figures 6 and 7).  Kneeling, lying on the couch, 
and sitting on the chair with feet on a coffee table were 
included to show that some common activities that might 
appear as a fall are not misclassified by our system 
(examples in figure 8).  Falls were performed differently, 
meaning that sometimes the person fell forward, 
sometimes backwards, and also to the side.  Fall scenarios 
also included falls that lasted for only a couple of seconds 
after which the person got back up, falls where the person 
stayed down on the ground but attempted to get back up, 
and falls where the person simulated a severe injury and 
laid on the ground motionless.   
 

  
 

  
 

 

Fig. 6: Walking, kneeling, and sitting on the couch and chair. 
 

 

  
 

  
 

Fig. 7: Walking, falling, and stretching. 
 

  
 

  
 

  
 

  
 

Fig. 8: Lying on the couch and sitting on the chair with feet up activities, 
which could be misinterpreted as a fall, are not recognized as a fall in our 

system.  Rules for falls and knowledge about three-dimensional voxel 
person helps with the elimination of many false alarms.   

 
Metric 1, table 1, shows the evaluation of the system 

from the standpoint of frame-by-frame state decisions.   
 
Table 1. Comparison of frame-by-frame state decisions 
between the system, s, and the ground truth, t, (Metric 1).   
 

 
 

The results in table 1 are shown as percentages and they 
indicate the frequency at which our system agrees or 
disagrees with the human‟s labels (each row sums to one, 
within numerical precision of the displayed numbers).  The 
results show that the system captures nearly all of the on-
the-chair and all of the on-the-couch states (those activities 
that mostly depend on the spatial location in the room of 
voxel person and a static object).  These activities still 
involve reasoning about the pose of the subject, but the 
position in the room contexutalizes the activity and 
simplifies identification.  A room is segmented by a human 
into regions that are used to help track and reason about 
activity.  Figure 9 shows an example apartment 
segmentation and illustrates how we track voxel person 
interacting with scene regions.   
 



  

  
 
 

Fig. 9: A room is segmented by a human into different regions and large 
static objects are identified.  Voxel person is projected onto the x-y plane 

and a measure of region overlap is produced for tracking [14]. 
   

As more activities are identified for the couch and chair, 
the rates will most likely decrease some, but these tasks are 
clearly distinguishable from the majority of activities that 
the subject performs at various locations in the apartment. 

The upright state has good classification (82.7%); 
however, some time intervals were called on-the-ground 
(16.9%).  These situtations are due to two factors.  The 
first and largest factor involves time intervals in which the 
subject moved into the far bounds of one or both of the 
cameras and the viewing angles make object reconstruction 
difficult.  To address this, we are working on fuzzifying 
the feature extraction process to take into account factors 
such as the viewing ray angles and the distance of a voxel 
to the camera focal plane.  The second problem resides in 
the fuzzy sets used to build the rules.  These sets were 
empirically defined by humans.  Some situtations in the 
feature extraction process do not perfectly fit the 
empirically determined fuzzy sets.  We will address this 
problem in the future by learning the fuzzy sets from 
training data and comparing this to the nurse‟s system. 

The on-the-ground state was recognized in 97.6% of the 
image frames, which is critical for fall recognition.  The in-
between state had little similiarity with on-the-ground, but 
it was essentially similar to upright.  This primarily has to 
do with the fuzzy sets used to classify that state.  The 
automated system‟s fuzzy sets do not coorespond with the 
human‟s assesment of in-between.  The human was quick 
to call someone in-between, while the fuzzy sets were 
designed to really detect the time intervals when someone 
was half way between upright and on-the-ground.     

Table 2 is the system evaluation results according to 
Metric 2, which compares the linguistic summarizations to 
the ground truth labels. 
 
Table 2. Comparison of linguistic summarizations, s, to 
ground truth labels, t, (Metric 2), computed as s-t.   
 

 
 

 Negative numbers in table 2 indicates fewer linguistic 
summarizations than labeled intervals were found.  
Positive numbers indicate that we generated more 
summaries than there were labels, and zero values indicate 
that there were the same number of summaries as labels.  
The results show that, in activities that involve interaction 
with the chair and the couch (static scene regions/objects), 
the automated system finds what the human identified.   

Table 2 shows that a fair number of upright time 
intervals went undetected.  This is mostly because 
linguistic summarizations that are too short in time 
duration are removed by our system.  These periods are 
possibly due to incorrect silhouette segmentation, 
inaccuracies in fuzzy inference, or high frequency activity 
that is not related to fall detection.  Elders do not generally 
perform extremely quick activities, such as being on the 
ground for only one second.  We remove linguistic 
summarizations less than two seconds.   
 We discover more on-the-ground and in-between states 
than human labelings.  After looking at the level one 
inference results, this is because of time intervals of 
incorrectly inferred activity and silhouette segmentation 
error (bad features extracted, hence, incorrect inference).  
As a result, the linguistic summarizations produced by our 
system are segmented into a larger number of smaller 
summaries.  This is not ideal from a report generation 
standpoint, but from a recognition standpoint it is not bad 
as long as we are still able to automatically recognize falls 
from these summaries (which we are able to do).    

Metric 3 is the most important; it shows how many times 
the second level of inference correctly classified a fall.  
Sixteen short time period sequences were evaluated (30 
seconds to 1 minute in duration each).  In 12 of these 
sequences the subject walked into the room, went over to 
the mat, and then fell to the ground (where the falls were 
performed in different fashions, such as to the front, the 
side, etc).  Each fall was successfully detected; there were 
no false alarms.  Four of the 16 sequences were non-fall 
activities, such as bending down to tie one‟s shoes and also 
tripping and getting back up immediately.  Nurses 
indicated that they would like to get a summary when 
someone is on the ground for a short amount of time, but 
they do not want to have an alert generated.  We did not 
call any of these false alarm situations a fall. 

Two longer time period sequences were evaluated for 
falls.  There were no falls in the first sequence, which was 
approximately 7 minutes in duration, and the system 
correctly did not classify any falls.  In the second 
sequence, approximately 11 minutes in duration, there 
were four on the ground periods, however, only two falls.  
In the first fall the subject stayed on the ground for a long 
time period and in the second case the subject fell and 
repeatedly tried to get back up but was not able to.  In both 
of these situations our system correctly classified the fall.  
There were two on the ground activities that were intended 
to look like a fall.  In the first case the subject tripped and 
got right back up and in the second case the subject went 
to the ground but was able to make it back up in a 
reasonable amount of time (quantified by the fuzzy sets 
that the nurses picked).  In both of these cases the system 
correctly did not flag a fall. 

Even though there were more on-the-ground linguistic 
summaries than there were on the ground activities, the 
system correctly classified all of the falls.          

VI. CONCLUSIONS 
In this paper, we demonstrated the performance of a 

video-based activity analysis system for assisting elders 
with “aging in place”.  The primary activity analyzed was 
falling, which is a relatively short time activity.  The 



  

system is built using soft computing and activities are 
recognized using linguistic summarizations of activity.  
The system‟s knowledge is expressed using linguistic 
variables, which helps in understanding its successes and 
failures, and more importantly, identifying and fixing 
problems.  The linguistic summaries also provide a rich set 
of reduced descriptions about the video sequence in a 
language and format that users can understand.  The 
metrics that we introduced indicate that there is still some 
work to be done with respect to matching the exact number 
of lingusitic summarizations and the hand labeled activities 
and the frame-by-frame decisions made.  However, the 
system generated an adequate number of on-the-ground 
summaries, which enabled the second level of inference to 
correctly classify falls and distinguish between fall and 
non-fall activities.    

VII. FUTURE WORK 
Many of the quantities used in this work are based on 

empirical observations and domain knowledge from 
nurses.  As mentioned above, we are investigating using 
training data to determine fuzzy sets and fuzzy rules.  This 
should help with some of the deficiencies observed in 
evaluation metrics 1 and 2.  This will also provide a 
comparison between domain experts and an automated 
way of rule and/or fuzzy set acquisition.   

We just captured a larger dataset of falls using stunt 
actors that can be used to learn the system parameters and 
further test the system under a wider range of activities and 
subjects.  To make sure that the actors performed the falls 
in a similar fashion to the way that elders fall, nurses 
coached the stunt actors.  We showed great discriminatory 
ability for the range of activities that were included in the 
data set analyzed in this paper.  However, we captured a 
more complicated and larger set of false alarms activities 
in the stunt actor data set.  We will analyze these 
situations, measure how the system performs, and 
recommend corrections based on these findings.   
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