
  

  

Abstract— The goal of our work is to explore the use of 

EMG signals for post-stroke, robot-mediated therapy. 

Previous findings suggest that providing performance 

feedback to the users could enhance recovery beyond simple 

knowledge of success or failure in task completion. We are 

exploring whether activation of arm muscles can be used to 

a) generate goal-directed movements and b) provide the 

required performance feedback to enhance recovery. The 

EMG-based scheme must be able to determine the subject’s 

intended directions within a few hundred milliseconds. Here 

we report a pilot study involving young, healthy subjects 

conducted to determine whether it is possible to build a static 

map to cluster EMG activation patterns for horizontal 

reaching movements.   

I. INTRODUCTION 

obot mediated, sensory motor therapy has shown 

positive results in augmenting recovery of stroke 

patients [1, 2]. Optimizing and tailoring therapy to a 

patient’s needs is one of the most important issues 

addressed by research groups [3, 4]. Cirstea and Levin [5] 

asserted that therapies stimulating patient attention to the 

movements themselves in addition to the outcomes are 

more effective; furthermore, they might facilitate better 

generalization of motor skills to novel situations. At this 

time, we are investigating the use of electromyographic 

(EMG) signals to control the movement of a robotic 

system during neurorehabilitation in order to provide some 

movement feedback and to correlate the activation of arm 

muscles with the generation of reaching movements. The 

EMG signal is directly generated by the brain and is 

always activated before the beginning of an action; thus, it 

can be used in real time applications because it is possible 

to predict the movement before it happens.  

Similar problems have been treated by different research 

groups in the past [6-8]. Typical applications are related to 

prosthetic hand control, grasp recognition and human 
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computer interaction [9-11]. Using a different approach 

from these applications, we aimed at developing a 

feedforward model depending on which part(s) of the 

Central Nervous System of normal healthy subjects 

initiates the movements, i.e., to map a number of different 

goals into a set of muscles patterns. In fact, if this general 

model exists, it could be reasonable both to use it for 

robotic aid therapy and also to compare this paradigm with 

performances of stroke patients who have lost the 

capability of modulating their muscle activation. It is 

noteworthy then that this model must not be affected by 

intra- and inter-subjects variability or by repeatability of 

the measure (due to posture on the robot, positioning of 

the electrodes, or different experimental conditions). To 

this aim. it is necessary to develop an algorithm able to 

identify the intended movement direction from EMG 

signals (even with weak muscular activity) and provide a 

corrective action if appropriate. The outcomes of this 

preliminary study with healthy subjects will be used to 

assess feasibility and quality of the signal classifier. We 

compared two different methods for pattern recognition: a 

more classical approach using statistical learning tools 

(Support Vector Machine), and a second graphical 

approach that explores EMG spatial characteristics, detects 

anomalies, and interprets co-activation patterns as related 

to posture, arm stabilization, or high speed motion.  

II. METHODS 

A. Experiment Protocol 

Nine right-handed young healthy subjects (age range 

between 24-44 years old) were involved in the experiment 

after providing written informed consent. Participants sat 

on a chair and grasped the handle of a planar 

manipulandum, the Inmotion2 (Interactive Motion 

Technologies, Cambridge, MA, USA); the trunk was 

restrained by a belt to minimize movements and the right 

elbow was supported on the horizontal plane. Participants 

were instructed to make point-to-point reaching 

movements between a central position and one of the four 

peripheral locations arranged in the form of a cross of 14 

cm distance from the center to the outbound target. After 

one second, they were prompted by a sound to initiate 

movement. Movements were performed with three 

different time intervals, 300-600-1000ms. Subjects were 

alerted if they went too slow or too fast by visual 

feedback. Each direction and condition was repeated 5 

times. 

B. Data Acquisition 

Hand position and EMG activity of 7 muscles were 

recorded. The robot sampled hand position at 1000 Hz.  In 

all experiments, we recorded the EMG activity of biceps 

(BI), triceps(TRI), middle, posterior, and anterior deltoid 

(DM,PD,PA), pectoral (PE) and trapezium (TRA) with 
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bipolar surface electrodes (Bagnoli-16, Delsys, Boston, 

MA), where the EMG signal was bandpass filtered (20–

450 Hz) and amplified (gain of 1000).  

 

C. Data Analysis 

For each movement, we selected as its EMG baseline the 

signal between the beginning of the trial and the instant in 

which subjects were prompted to move (beep). Movement 

onset was computed considering the instant in which hand 

speed passed the 5% mark of its maximum speed. EMGs 

signals were analyzed in a time window between [-100 

100] ms with respect to movement onset. Two different 

methods were used to cluster the data; the first one 

allowed a graphic clusterization and was called 

biomechanical model, while the second exploited the 

statistical distribution of the data to separate the different 

classes (Support Vector Machine). We used the EMG raw 

data of each movement to determine the Coefficient of 

Expressiveness (COE) [12], and EMG Histogram 

parameter (HIST) [13]. 

 

 

CoE  Parameter 

The PCA analysis was computed for each movement and 

applied to the covariance matrix of the EMG raw signals 

considered for the specified time window.   

 

The CoE parameter was computed for each l
th

 muscle, r
th

 

direction based on the following expression: 
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where n is the number of Principal Components that 

contains 80% of the variance of the system, ci,l,r is the 

correlation coefficient between the i
th

 PC and the selected 

muscle for the r
th

 movements, λi is the eigenvalue 

associated to the i
th 

PC, p is the total number of eigenvalue, 

J is the numbers of trials. 

 

For each movement the CoE coefficients were normalized 

with respect to their maximum value among the 7 muscles; 

only values larger than 0.7 were considered important, the 

others were considered non-relevant (CoE=0). Each trial 

was summarized via the 7-component vector. 

 

HIST Parameter 

The HIST parameter was computed fixing a voltage range  

for each muscle activation symmetric with respect to the 

baseline, which includes the activity  for all conditions and 

directions. The interval was divided into 9 bins. The 

frequency with which the EMG voltage falls within each 

of the voltage bins was computed; therefore, in the end 

each muscle was represented by a set of 9 values and the 

entire movement by a vector of 63 components.   

 

1) Biomechanical Model (BM) 

The CoE Parameter was used to cluster the data according 

to the geometry.  Flanders [14, 15] and Georgopoulus [16] 

suggested that EMG signals for a particular muscle could 

be decomposed into a phasic and a tonic waveform for all 

directions in a single plane. These two components were 

then time-shifted and amplitude-scaled according to 

movement direction. Thus, each muscle was: 

1) considered more relevant for a direction when the 

CoE parameter >0.7;  i.e.,, it acted as an agonist;  

2) not activated in the opposite movement direction, in 

which it played the role of the antagonist.  

Figure 1B shows the activation map for all conditions and 

subjects. We clustered together muscles responsible for 

particular movement direction (Muscle, CoE). The results 

suggest 4 different zones (see Figure 2). Thus, recognition 

of movement direction was possible provided we could 

identify the muscle activation zone. Incorrect pattern 

recognition was due to overlapping zones, due to co-

contraction of agonist and antagonist muscles to stabilize 

the arm, and due to differences in the initial posture and 

speed. To account for all these factors, we developed a 

cost function based on literature review of abnormal 

coactivation patterns [15, 16]. We were then able to detect 

and interpret all the anomalies. 

 

 

 
Figure 1 A) Top: An example of CoE for forward 

movement direction towards the robot (robot is located 

in front of the subject) B) Bottom: muscle activation 

map; in red are the most important muscles for the 

particular direction. 

 

 

2) Support Vector Machine (SVM) 

The different values of the HIST parameter were used as 

inputs for a Support Vector Machine algorithm (kernel: 

Gaussian radial basis function, sigma=2), a supervised 

learning method used for classification and regression [17, 

18].  

 



  

To validate the model many different tests were carried 

out; in each case the SVM was trained with the 70% of the 

available data and validated with the remaining 30%. 

a) Training and validating individually with the data 

of each subject 

b) Training and validating with the composite data 

of all subjects 

c) Training with 7 subjects and validating with the 2 

worst performers (higher number of anomalies)  

 

3) SVM+ BM 

We considered the integration of the two methods. The 

integrated pattern recognition system ran the data three 

separate times and, like a voting system, selected the 

direction recognized more frequently (at least 2/3). The 

integrated system ran the SVM with different time 

windows (I interval [-100 100] ms, II interval [0,50] ms), 

and the BM.  We tested the hybrid system with sets of 5 

patients randomly selected from the data.   

 

 
Intra-subject variability was also evaluated for data 

collected during different days for the same subject (4 out 

of 7 subjects). Furthermore, the model was re-designed 

with a smaller subset of subjects (5 to 7)  to understand 

how the number of training data points can affect the 

accuracy of the SVM. 

III. RESULTS 

Table I summarizes the results of the tests carried out with 

both methods. We speculate that differences in forward 

and backward movements are due to the small differences 

in initial posture.  In the case of the BM, the forward rate 

of success increased from 67.5% to 80% considering a 

muscle pattern of activations involving both the agonist 

and antagonist muscles. As expected, employing the SVM 

and training it individually led to a high rate of success 

(mean value 95%), but it dropped to 89% when training 

with the “composite” of all subjects. During validation 

with the 2 subjects characterized by the worst 

performance, the rate of success dropped further (mean 

value of 83%). The integrated voting system increased the 

success rate to 86%.  Experiments conducted in different 

days with the same subjects showed that, in the case of 

forward movements, there was no significant intra-subject 

variability.  

 

Table II showed an overall review of our main results 

obtained with different techniques against literature 

research. It was able to get the 100% of accuracy using a 

neuro-fuzzy classifier to detect arm movements in three 

directions (excluding our South direction) [12]. Of notice, 

he considered different features for different subjects 

were considered and the classification algorithm has beed 

trained his  algorithm individually [12]. Other research 

groups investigated alternatives for EMG control of 

prosthetic devices [9-11]. The classifiers were trained 

individually with a resulting success rate varying between 

94-99%. Hidden Markov Models (HHM) and Higher 

Order Statistics (HSO) were also tested [19, 20], but the 

results so far were not very promising, having relatively 

low success rates. Finally, brain computer interfaces 

(BCI) used to command computer devices with muscle 

activity of upper limbs were also considered [21]. They 

claimed a remarkable 96-97% recognition of individual 

intentions. We were only able to achieve similar success 

when we tuned the system for the specific individual.   

 

IV. DISCUSSION 

This pilot study involving young healthy subjects was 

conducted with the aim of understanding whether it was 

possible to build a static map of EMG pattern activation 

for point-to-point reaching movements. We limited the 

data to the initial 100ms of movement and tried to predict 

the ultimate direction of movement. We also attempted to 

determine inter and intra-subject variability and how it 

could affect repeatability. In the end, our best classifier 

TABLE I 

RESUME OF THE SUCCESS RATE OBTAINED WITH THE 

BIOMECHANICAL AND SVM METHODS PROPOSED IN THIS PAPER 

Methods Forward %  
Backward

%   

Biomechanical Model (BM) 67.5% 63% 

BM with cost functions 80% 65% 

SVM individual training 95 % ± 10% 
87% ± 

11% 

SVM composite of all subjects 89 % ± 4% 80% ± 6% 

SVM composite of 7 subjects vs 2 

medium subjects 
86% ±7% 79% ± 6% 

SVM composite of 7 subjects vs 2 

outliers
* 83% ± 7% 79% ± 9% 

SVM  + BM 

(composite of 7 subjects vs 2 

outliers
*
) 

86% ±7% 80% ±11% 

Intra-subject Reliability 

(Same subject in different days) 

No 

significant 

differences 

Significant 

differences 

SVM (composite of 5 subjects vs 

2 outliers) 

 

83.1% 

No 

differences 

with * 

79% 

No 

difference 

with * 

 

 
Figure 2 - Distribution of the CoE parameter (Muscle, CoE)  of 

one subject in the different movement directions. Figure showed 

the presence of 4 defined muscle activation zones. 
 



  

guessed correctly at a rate of 86%. This result might look 

inferior to other groups (see Table II) but, in point of fact, 

we claim that our approach is more realistic for our 

application. Most of the cited results achieved a higher 

success rate through individual training and validation 

employing data from the same subject. We employed data 

from distinct subjects during validation. Furthermore, we 

considered different hand speeds and did not exclude any 

data to determine success rate. 

  

Inter- and intra-subject variabilities were not the most 

critical factors affecting the classifier performance. It 

appears to be possible to define a general map of pattern 

activations: muscles responsible for movements in a 

particular direction were always the same, albeit there 

were some occasional outliers due to co-activation, due to 

arm stabilization or posture.  

 

 
The rate of success of the SVM and BM were comparable, 

except when SVM was trained to fit a single subject: in 

that case, SVM approach was clearly superior. However, 

we failed to guarantee 100% success with any method,  

SVM, BM, or the integrated voting method. The SVM 

attempts to classify based on the geometric characteristics 

of the distribution; it needed to be trained before 

deployment and its performance depends heavily on the 

quality of the training data. We suspect that 100% success 

could not be achieved employing a single model: the 

system must be individually tuned for each subject. This is 

not a practical approach for patients with high injury level 

who might not be able to hit all the targets. 

 The BM approach was able to characterize and quantify 

muscle activity in a spatial way and to provide a graphical 

overview of the variations among different directions. It 

seems to cope better with anomalies. To generate a 

universal model not tuned on a specific subject, the BM 

might be advantageous since it is less complex and 

reduces significantly the computation time. It also copes 

better to detect co-activation spurious EMG. Thus, the BM 

will soon pass through further analysis with stroke patients 

during robot-mediated rehabilitation therapy.   
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TABLE II 

LITERATURE SEARCH FOR EMG PATTERN RECOGNITION 

Methods 
Accuracy 

range  

Arm planar movement using statistical and fuzzy 

techniques 

( 7 shoulder muscles, arm movement in 3 direction; 

neuro-fuzzy classifier; calibration of the classifier and 

feature of signals chosen depending on the subject) 

100% 

Arm prosthesis EMG based control  

(arm and forearm muscles, several NN and fuzzy 

classifiers, distinct features individually calibrated) 

94-99% 

Other methods for EMG classification  

(HHM, HSO ) 

 

90-94% 

Brain computer interface (BCI) using EMG  96-97% 

 


