

Abstract— In this paper, a network-based service

architecture (NBSA) for Ubiquitous Robotic Companion
(URC) has been proposed for controlling network-based
robots in ubiquitous network environment. By allocating
several service servers and sensors in the environment and
connecting them with the robots through wireless connection,
a network-based robot system can be created. NBSA provides
a core program for developing this network-based robot
system. Using a multi-agent framework with some service
organization extension and coordination agents, behaviors of
the robot can be created, added and removed dynamically by
users via a simple scripting method. Experimental results
show that NBSA provides an extendable behavior control
system in the network environment and it decreases the
development time for adding new services. Using this
architecture, role of a network-based robot, method for
coordination and working scenario can be changed easily by
users without retouching the core program.

I. INTRODUCTION

Network-based robots are made to serve and assist
humans by imitating and providing human-like actions and
behaviors based on service contents and intelligence
software in external servers outside of the robots. So, they
have a large set of basic behaviors and can perform many
different tasks by using arms, hands, and mobility.
Controlling a system with many degree-of-freedoms and
sensors, many real-time sensor data streams consumes a lot
of CPU power. Due to the reason, not much space is
available for complicated high-level services such as face
recognition, gesture recognition, object recognition,
reasoning and so on. Therefore, using services on the
external servers and connecting them with the robots in an
extendable network-based architecture is a good solution.
Such a network-based architecture is essential in the sense
that a robot becomes a partner and an assistant of human
beings in ubiquitous environment, where the external
sensors or even household network enabled devices can be
connected together to create an intelligent environment.

The architecture is requested to provide functions that a
robot can explore external services for its goal and users can
explore the robot with the added ability provided by the
surrounding servers. The services can be added, removed or
changed on the surrounding nodes frequently while
embedded control programs of the robot can not be changed
frequently. So, the architecture is expected that the robot is
equipped with a relatively stable embodied program.

Manuscript received January 31, 2008.
D. N. To, D. -I. Kim, B. –J. You, and S. –R. Oh are with Center for

Cognitive Robotics Research in Korea Institute of Science and
Technology (KIST), Haweolkok 39-1, Seongbuk, SEOUL 136-791, Korea
(corresponding author to provide phone: +82-2-958-5760; fax:
+82-2-958-5749; e-mail: ybj@kist.re.kr).

Whenever a new service is added, the system should be able
to detect this new service and coordinate this new service
with existed system. The human-robot interface system
should be able to provide all available services for accessing
by other partners or users.

The coordination is done using pre-defined rules. In some
cases, knowledge discovery and exploration among
networked nodes need to be considered. The architecture
therefore needs to support a knowledge description
language and a reasoning system. Moreover, one
network-based robot sometimes is expected to play a
different role such as role of a man, a woman, a kid, a butler,
a house maid, etc. With each role, the behaviors and/or
voices should be changed accordingly. The architecture also
needs to provide a solution to do it simply without
reprogramming the coordination system in other servers.

Users explore the system using their network access
equipment such as computer, notebook and PDA. The robot
system sometimes may be offline for battery charging or due
to network problems. Users are, however, busy and hope to
access the system as fast as possible. The architecture
should provide a method to deal with this offline situation.
Moreover, users normally are not robotic experts so they do
not know exactly what to do. So, a graphical user interface
with detail explanation and/or a simple scripting language
for scenario, role and coordination describing are very
useful.

A client server model, where each robot requests the
services to external servers, can be a solution but it is not
scalable. Whenever a new service is added, the client code
on each network-based robot should be modified to access
and to explore the service. Moreover, offline problem is
difficult to solve in client-server model. Considering the
above requirements, multi-agent technology is a good
choice to design the system.

In this paper, there is proposed a Network-Based Service
Architecture (NBSA) for robots to deal with problems in
network environment. Also, a coordination method is
proposed to explore coordination scripts, service agent and
multi-agent management system. Using the coordination
method, services can be added from service servers without
any changing in embedded software of the robots.
Behaviors, which are created by the coordination, can be
detected, explored and customized by users and the robots
using the proposed NBSA.

Next, a role-based method, which helps users to define
the role of a robot, is proposed. Using this method, a robot
may change all its real implementations of behaviors
without affecting the coordination script. The same
network-based robot can play a role of a man, a woman, or a
kid depending on the profile that can be selected by users at
the scene. A service access method is proposed by using

Network-based Robots and User Interaction Framework

Dong Nguyen To, Do-Ik Kim, Bum-Jae You a and Sang-Rok Oh

slave agents, agent migration and multi-agent system. Using
this method, users can access the system, receive service
interfaces and explore it at a highly available level.

In order to evaluate the proposed architecture for
network-based robots, a number of experiments on a
humanoid robot, MAHRU, have been conducted
successfully by adopting JadeLeap middleware
(Bellifemine, 2003) and FIPA standard (Foundation for
Intelligent Physical Agents http://www.fipa.org.) on a
system, which consists of a PDA, a network-based
humanoid named MAHRU developed at KIST, external
service servers, and other mobile robots. An extension of
Jess rule engine (the Rule Engine for the Java Platform
http://herzberg.ca.sandia.gov/jess/) and corresponding
implementation classes are developed for describing and
implementing coordination. Experimental results show that
the proposed framework decreases the development time,
decreases the time for network connection of robots and
user devices. Most importantly, it provides the extendable
ability for our humanoid system and gives users the way to
easily modify behaviors of the humanoid that can explore
the service servers located in the network.

II. RELATED WORKS

Recently, there are some researches on the distributed

architecture for network robotics. Lee, J. et al (Lee, 2004)
proposed a Robot Software Communication Architecture
(RSCA) that explores real-time CORBA middleware to
provide a development framework for a distributed control
system. RSCA provides a real-time, object-oriented based
method for developing the service in a distributed
environment. The method is good for the cross-platform and
cross-language development process. It comes together with
several standard operations for deploying distributed
component-based robot application such as installation,
start and stop options. However, software control system
should be modified when a new service is installed for the
first time. Moreover, all main development tasks are done
on the service server side. Hans, Utz. et al (Hans, 2002)
introduced another distributed architecture named
Middleware for Mobile Robot (MIRO). MIRO also uses
CORBA middleware for distributed cross-platform
development. MIRO defines the layer architecture including
device layer, service layer, and class framework. These
layers provide the standard services for robots. MIRO could
be extended for supporting external services. However,
MIRO could not address the service discovery and
coordination problem in offline situation.

In order to coordinate network devices and robots, Baker,
D. I. Et al (Barker, 2004) proposed a framework for
dynamic distributed architectures. This framework uses task
directed method to coordinate distributed systems. It
explores a module pool and resource server to create the
task controller outside of the standard module. Service
discovery and coordination are handled using dynamic
loadable share object library. It solves problems of
reconfiguration and multi-robot coordination. However, it
did not provide an abstract layer for communication and

human robot interaction.
Wu, Chao-Lin. et al (Wu, 2004) employed the mobile

agent to provide the distributed control architecture for
home automation system. This architecture is based on
mobile agent to transfer the message agent around the
system and coordinate with the functional agent in each host.
It addresses the human system interface and task
coordination problems. However, transferring message
agent for collecting data during the coordinating process
causes latency and reduces performance. In our method,
only the interface is migrated through network. The
coordination is done by a coordination agent, which
implements a task description script.

Ha, Young-Guk. et al (Ha, 2005) use semantic web
technology for service-oriented integration of networked
robots with ubiquitous sensors and devices. This method
explores the web ontology language and hierarchical task
network (HTN) method in reference (Nau, 2003) for
defining the coordination of each node. This approach is
good in coordinating robot and environment without any
pre-defined information. However, the service management
and exploration in offline situation is not solved. Instead of
using HTN we directly make scripting of primitive tasks by
extending the Jess language. The corresponding
implementation library of all standard humanoid behaviors,
which can be invoked from Jess script, is also supplied in
our architecture.

Dong To Nguyen et al (2005), also did develop a
framework for human-robot interaction in network
environment. The Virtual Directory Facilitator (VDF) is
used in this framework as a method for coordinating mobile
robots, distributed sensors, users in different situation.
However, a mobile robot can perform only limited tasks so
the coordination is mainly for gathering the information
from environment for path planning or localization. More
complicated robots such as humanoid robots or torso robots
with wheel-based mobility can perform many types of tasks
and requires coordination with many different types of
servers in different situation. Therefore, an easy-to-use
scripting method is required for describing the scenario,
coordination flow, and role of each robot. The proposed
NBSA includes an improved VDF architecture while
scriptable role-based systems and coordination methods
provide more flexibility for humanoid controlling system
development.

III. PROPOSED ARCHITECTURE

A. System overview

Fig. 1 shows a physical view of our system. A
network-based robot is surrounded by several service
servers, which provide external processing services such as
face recognition service or gesture recognition service.
Normally, these service servers receive requests and data
from the robot and send back the analyzing results when it is
necessary. The number of service servers is changeable.
Robots, users and developers can detect the new service
servers and explore them for their purposes using our
network-based architecture.

Fig 1. Overall system

For developing of this system, there are three groups of

developers, who can explore the proposed architecture in
different manner to ease their process of creating, exploring
and monitoring a service.

Robot program developers are those who develop the

controlling system, primitive behaviors, user interface and
exporting information such as sensor data stream from
hardware layer. These developers need not to care how
many external servers exist and how to coordinate them.
They just simply develop and provide the Application
Program Interface (API) that can be called by some
instructions from behavior level.

Behavior control developers are those who check

primitive behaviors, external services and determine which
services can be created using these primitive behaviors and
current existing services.

Service developers are those who develop external

services that can use the exporting data from the robot. In
order to use information from the robot, these developers
should also develop the coordination agent to register the
exporting data and communicate with the service. If the
service provides the interface for users, these developers
should also develop this interface.

NBSA provides tools and core programming codes for

each group of developers to do their tasks. NBSA is
designed for two groups of users. Normal users should be
able to access the system using its user agents. Normal users
select the behaviors in the list of behaviors. Then they gain
access to the interface of this behavior and interact with this
interface if it is necessary. Expert users even could define
some rules that change the functions of the whole system.
Using the role function and coordination script, which will
be described in the next section, expert users can change the
role of a robot and all of its behaviors in each situation.
Expert users can also be able to change the way of exploring
the service servers in the network environment.

B. Overall architecture

Fig. 2 shows the proposed network-based service
architecture with 4 blocks: Robot Block, Main Container
Block, Service Server Block and User Container Block.

Fig 2. Overall structure of NBSA

Robot block

To be a partner of a multi-agent system, the control
software located on a robot is redesigned into two parts: the
control part and the interface part. All behaviors and
services in the interface part are arranged as agents by
considering only the network-based services. Human-robot
interface services require human interaction. With these
services, robots create slave agents and migrate them to the
main container. These services require no pre-defined
algorithm and configuration. Users can send command and
work with the services by using their graphic user interface
(GUI).

The primitive behavior interface agent is the interface to
the behavior that interacts with outside partners. A service
or behavior can coordinate with the external service
provider and these primitive behaviors by defining a set of
rules for processing the coordination information in a task
scripting rule base language. Jess rule-base is selected to
implement this script because it supports external function
invocation and can translate the agent message as facts for
its rule based system. By sending messages to the interface
agents, partners can invoke a command in a network-based
robot system. This command can be called directly through
a behavior of the interface agent, or indirectly through some

processing units such as Jess rule-based engine.

Main container block

Main container is a main service management block.

FIPA standard is selected to implement the framework.
FIPA standard defined a management system using a central
control in its main container. In our architecture, the
implementation part and the interface part of a service are
separated so that the interface part can be moved around
network by migrating. Each robot appears in the system as
an agent. Each time this agent registers to the agent
platform, it creates its slave service agents. Using the
mobility feature of the agent platform, slave agents will be
migrated to locate on the main container. These agents work
as slaves for the robotic agents and service agents. They are
created at the time robotic agents and service interface
agents appear in the system and remains for a particular
period specified by these agents. The slave agents collect
information when the robotic agents are offline, get the
requirement or interact with users. It can provide
complicated graphic interface. Therefore, users with no
experience about the robot can interact with it because after
being migrated to the user device, it can be used as a normal
application program. The slave agents are synchronized
with robotic agents when they are online. To control such a
slave agent group, a special agent in the agent platform is
created. It is called as a Virtual Directory Facilitator (VDF)
agent. VDF works similar to Directory Facilitator (DF) in
FIPA standard. However, all of these services are provided
by slave agents as shown in Fig 3.

VDF is responsible for synchronizing the slave agent and
robotic agent, service interface agent. The User Agent (UA)
located on the PDA of each user works as a service
query-and-display tool. UA can query all the services
currently available on a system and then select the service
that users want to use. After a service is selected, VDF will
clone a copy of the service interface and move it to the
container in PDA. After users interact with the interface, all
data will be synchronized among interface agent at the
service level. VDF will be responsible for finding the time
and partners of the synchronization.

a. FIPA Agent Platform b. FIPA with VDF extension

Fig 3. Management architecture of FIPA standard and VDF

This system helps external services and each robot to

broadcast its service even after it deregisters from the
system temporally. Instead of only giving the name of
service, the real interface of the services is given. Users can
save the time for interaction with services because they can
access the system at any time. Then they can work with the
interface in the VDF and explore this service by invoking
the interface. The availability of the system increases since
the demand of long-term or permanent network connection
of the system is reduced and each robot and external
services only need to be connected to the system for a short
time to migrate its service interface or to synchronize the
data.

Besides controlling the interface of services, VDF also
control the list of coordination agents that coordinate the
humanoid and the service provider. Normally the
coordination process is specified by a scripting snippet.
When user selects a behavior from VDF, coordination
agents will run the corresponding scripting code and the
system operates under the coordination rules in the script.
VDF should do the synchronization and check each partner
in behaviors to assure that all partners are available at the
implementation time. If not, it should deactivate the state of
a service.

TABLE 1. Role of virtual directory facilitator (VDF)

Order Role
1 Control the behavior lists including primitive

behaviors and new created behaviors
2 Clone, migrate service interface to user container
3 Synchronize data among interface agent
4 Control the data flow in each service

Service server block

Service block is located on the service provider
computer. The core service program processes the data
received from the robot, analyses and sends back the result
to the robot. In order to explore the service, a scripting
program is used to coordinate the service and the behaviors
of the robot. Users can also directly access the service and
customize it using a slave interface agent that can be
migrated to the main container and later on to the user
container. Table 2 shows the tasks of service server block.
The core service interface agent receive request from the
robot, pass it to the Jess engine as a fact for ruled-based
system. The corresponding action will be carried out
according to the rules that are fired in the coordination
script.

TABLE 2. Tasks of service server block

Step Task Action
1 Register the

service
Send register message to virtual
directory facilitator.

2 Request input
data

Request sensor data as input for
the analyzing service

3 Provide service
user interface

Create and clone the slave agent
for service interface.

4 Add new
behaviors

Add new behaviors to the VDF
and provide a set of coordination

Software

Agent
Agent

Management
System

Directory
Facilitator

Message Transport System

Message Transport System

Agent Platform

Agent Platform

Software

Agent

Agent
Manag-
ement

System

Directory
Facilitator

Message Transport System

Message Transport System

Virtual
Directory
Facilitator

Slave
Agent

Robotic Agent

Agent Platform

Agent Platform

rules for each new behaviors

 User Container block

Users access the system via an UA located on their PDA.
The PDA does not have any information about the robots.
UA queries and clones the available services from the main
container and users can interact with the services via ACL
communication by using the UA.

TABLE 3. Task of user container block

Step Task Action
1 Register the user Send register message to VDF.
2 Request service

lists
Send request to the VDF to get
list of available service

3 Got service
interface

Clone and migrate the selected
service to user container.

4 Interact with
service

Interact with slave agents and
request synchronizing data

5 Request result View result from previous
tasks

6 Create a behavior
script

Expert user can create a task
description script for action.

C. Coordination with external service servers

Fig. 4 shows a detail of coordination flow of a system that
explores a separate coordination script to coordinate a robot
and a service. Coordinator agent at the robot and service
container should receive the messages from other
coordination agents. Then these messages are sent to Jess
Engine for processing. Then Jess engine check the rule
inside the service or robot behavior script code and send
back the corresponding message or invoke the native
commands through Java Native Interface if it is necessary.

Fig 4. Role of coordination script and service interface agent

With the same coordination script, behaviors of each

partner may be changed by accessing the service interface
agent that located on the robot container, service container
or clone versions of this agent, which have been cloned and
migrated to the user container. After users interact with the
interface agent, the robot can be changed to play the role of
a child, a man or a woman. The same command will be

interpret differently depend on the role selected. After
changing the role of each partner, the system will behave
differently without changing the main coordination script.
Coordination script is created by expert users and located in
the main container for accessing. In other cases, service
servers and the robot can be coordinated directly by using
the script located in service servers.

IV. IMPLEMENTATION & EXPERIMENTS

The proposed NBSA is tested with a humanoid, named

MAHRU, developed by Center for Cognitive Robotics
Research in KIST. MAHRU is a network-based humanoid
developed as one of Ubiquitous Robotic Companion. The
appearance is as shown in Fig 5. The height is about 150cm
and the weight is about 67Kg. It has 6 DOF for each leg and
arm, 1 DOF for waist, 2 DOF for neck, and each hand has 4
DOF. MAHRU is equipped with various sensors including a
stereo camera system, force/torque sensors, a microphone
while it is connected with external service servers in
wireless network environment. Now, MAHRU can work
with external service servers for face recognition, voice
recognition, gesture recognition, three-dimensional object
recognition, and information service.

Fig 5. Network-based Humanoid “MAHRU”

The experiment is conducted with the User Agent (UA)

on a PDA, iPAQ 5450, using JadeLeap. This iPAQ connects
to the network via an 11 Mbps wireless connection. The UA
is written as an agent in an agent container on Jade Leap
platform. In contrast to the conventional robotic control
system, this UA does not have any particular information
about robots or environments. After registering to the agent
platform, the UA can search for the existing VDF, query the
VDF on available services. VDF contains the services of
robotic agents that are currently online and offline. After

getting the list of services available in the system, UA may
send query VDF to request a special service. This service
interface is cloned in the main container and migrated to the
user container. Users run the interface on the PDA, work
with the service interface and leave the system. Later on, the
users search the result using this UA.

NBSA shows advantages to the client-server model as
describe in Table 4. Offline services can be done manually
for each service using client-server model. However, NBSA
system helps users to get the GUI of services and work
directly with any service in the system without caring how it
is synchronized with the real implementation part. With this
implementation it also helps to work with the group of
robots, or change behaviors of the whole groups by
interacting with the interface given by a member of the
group.

TABLE 4. Comparison with the client-server control system

Properties Client-server Multi-agent with VDF
and slave agent

Offline service
interface

No Yes. (Users work with
the interface via a clone
version of slave agent)

Behaviors of a
group can be
changed in
each
environment

No Yes. Robot interacts
with the system to get
information and its
behaviors can be
changed.

Selection of
robots

No Yes (based on service
requirements)

Dynamically
add, remove
services

No Yes (Using VDF,
Coordination agent and
Jess script)

V. CONCLUSION

We hereby have proposed a Network-based Service

Architecture, NBSA, which is suitable for network-based
robot software development of users. VDF and slave agents
work together to provide a solution for interacting with
services even in offline situation. VDF, the coordinator
agents, Jess scripting code and Jess scripting engine work
together to coordinate various types of agents - such as slave
agents, primitive behavior interface agents and service
interface agents - for interaction. Using NBSA, external
services can be added and removed without affecting the
robot operation and program. A library of standard robot
action for a humanoid, which can be called from Jess script,
is also provided. Using the core classes and management
block of the architecture, developers can concentrate on
making the services and their application. NBSA
contributes to the network-based robot field by introducing
the usage of a multi-agent system with slave agents for
services, a VDF agent, external service servers, and
coordination agents.

However, NBSA needs to be developed to deal with
various problems appear during its operation. Jess script is
somewhat difficult for normal users. In the next step, we are

developing a simple scripting language for users. For
knowledge description, a framework such as Protege
(Knowledge description framework, http://protege.stanford.
edu/) is being investigated for exploring services and
coordinates in ubiquitous environment. NBSA is not yet a
complete solution for solving all problems in the
network-based robot system but it is a good solution in term
of flexibility and extendibility.

REFERENCES

[1] Bellifemine, F., Caire, G., Poggi, A., and Rimassa, G., (2003), JADE
- A White Paper, in Journal "EXP - in search of innovation",
September, volume 3, pp 6-19.

[2] Baker, D. I., McKee, G. T., Schenker, P. S., (2004), Networked
Robotics, a framework for Dynamic Configurable Architectures, in
Proceedings of 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sendai, Japan pp. 1768-1773.

[3] Wu Chao-Lin.,Wei-Chen.Wang, nd Li-Chen. Fu, (2004), Mobile
Agent Based Integrated Control Architecture for Home Automation
System, in Proceeding of IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sendai, Japan, pp. 3668-3673.

[4] Ha. Young-Guk, Sohn. Joo-Chan, and Cho. Young-Jo, (2005),
Service-Oriented Integration of Networked Robots with Ubiquitous
Sensors and Devices Using the Semantic Web Services Technology,
in proceeding of IEEE/RSJ International Conference on Intelligent
Robots and Systems, Alberta, Canada, August, pp. 413-418.

[5] Hans. Utz, Stefan. Sablatnög, Stefan. Enderle, and Gerhard.
Kraetzschmar, (2002), Miro - middleware for mobile robot
applications, IEEE Transactions on Robotics and Automation,
Volume: 18, Issue: 4 , August, pp. 493 – 497.

[6] Lee. J, Park. J.-Y, Han. S. and Hong. S, (2004), RSCA: Middleware
Supporting Dynamic Reconfiguration of Embedded Software on the
Distributed URC Robot Platform, in Proceeding of the First
International Conference on Ubiquitous Robots and Ambient
Intelligence (ICURAI), pp. 426-437, Seoul, Korea, December.

[7] Nau. D.S, Au. T. C, et al, (2003), SHOP2: An HTN Planning System,
in Journal of Artificial Intelligent Research, Vol. 20, AIAF,
pp.379-404.

[8] Dong To Nguyen, Sang-Rok Oh, Bum-Jae You (2005), A
Framework for Internet-based Interaction of humans, robots and
responsive environments using agent technology, IEEE Transactions
of Industrial Electronics, Special Section on Human-Robot Interface,
Volume 52, Number 6, December 2005, pp.1521-1529.

