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N.D. Darnall, C.K. Donovan, H-Y. Tseng, P. Barthelmess, P.R. Cohen, D.C. Lin, Application of ma-
chine learning and numerical analysis to classify tremor in patients affected with essential tremor or 
Parkinson’s disease. Gerontechnology 2012; 10(4):208-219; doi:10.4017/gt.2012.10.4.002.00  The overall goal 
of this study was to compare the accuracy of various data analysis techniques to quantify tremor 
severity (TS) in a clinical context, with the aim of improving the reliability (context consistency and 
inter-rater agreement) of tremor evaluation in patients with Parkinson’s disease (PD) or essential 
tremor (ET). Ten patients with either PD or ET were asked to perform several tasks used in the clinical 
practice for the characterization of tremor. Three-axis gyroscopes in a Shimmer device measured an-
gular velocities of the wrist of each subject for postural, kinetic, spiral tracing, and resting scenarios, 
and a digital pen recorded subjects’ tracings of an Archimedes spiral printed on paper. Gyroscope 
data were used for training and testing a supervised machine learning algorithm to classify TS and for 
root mean squared (RMS) numerical rating of TS, while digital pen data were analyzed numerically 
to quantify tracing deviations from the spiral and obtain a tremor rating. We evaluated the perform-
ance of our proposed methods compared to clinicians’ diagnostic rating. The machine learning 
method matched the clinical rating with 82% accuracy, the digital pen with 78% accuracy, and RMS 
with 42% accuracy. We obtained the best accuracy of 82% using the decision tree machine learning 
approach with gyroscope data measured with the Shimmer.
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Application of machine learning and numerical 
analysis to classify tremor in patients affected 
with essential tremor or Parkinson’s disease
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Tremor can be defined as a rhythmic shak-
ing and involuntary rhythmic movements 
of body segments. It occurs in healthy in-
dividuals, as so-called physiological trem-
or1. Tremor is composed of two oscillations, 
mechanical reflex and central neurogenic, 
which are superimposed on a background 
of irregular and involuntary fluctuations in 
muscle forces and displacements2. In pa-
tients with neurological disorders, tremor 
is clinically described as rest, postural, and 
kinetic tremor. Rest tremor appears during 
resting while postural tremor is triggered 
by maintenance of a posture or a position 
against gravity. Kinetic tremor is evoked by 
a voluntary movement and is maximal while 
near the movement target1. 

Parkinson’s disease (PD) is a progressive neu-
rodegenerative disorder. The motor symptoms 
of PD include rest tremor, bradykinesia, and 
rigidity, and these develop gradually during 
the progression of the disorder3.  Motor (such 
as tremor) and non-motor (such as memory 
loss) PD impairments can be rated from a 
combination of self-reporting and subjective 
clinical assessments within different scales4, 
including Unified Parkinson’s Disease Rating 
Scale (UPDRS), Hoehn and Yahr Scale (HY), 
and Short Parkinson’s Evaluation Scale (SPES). 
The severity ratings of these scales range from 
0-4 (UPDRS), 1-5 (HY), and 0-3 (SPES)5.

Essential tremor (ET) is a neurological dis-
order with no known cause and is charac-
terized by postural and kinetic tremor6. The 
tremor can affect almost any part of the 
body, but it occurs most often in the hands, 
especially when the patients are maintaining 
a given posture or executing tasks, such as 
drinking from a glass, tying shoelaces, writ-
ing or shaving.

Tremor severity (TS) in ET or PD is commonly 
rated clinically using the Fahn-Tolosa-Marin 
Tremor Rating Scale (TRS), which is on a 
scale of 0 to 47. The rating is based upon the 
clinician’s observation of tremor location and 
amplitude, the patient’s ability to perform 
motor functions (such as writing and draw-
ing), and the patient’s self-report of their func-

tional disability resulting from tremor8. One 
of the most widely used clinical procedures 
for measuring the severity of arm tremor is 
tracings of Archimedes spirals9. Patients with 
tremor show irregularity with swerves com-
pared to individuals without tremor10.

More objective assessments of tremor have 
been made by quantitative measurement of 
tremor characteristics11-13. Namely, tremor 
frequency varies by both tremor type and 
tremor location. Rest tremor frequency is 
typically in the 3–6 Hz frequency range3. 
The frequency of postural tremor is between 
4 and 12 Hz. Kinetic tremor has a frequen-
cy between 2 and 7 Hz. Mechanical-reflex 
tremor depends on limb inertia and joint 
stiffness. For example, normal elbow tremor 
occurs at 3-5 Hz while wrist tremor has a 
natural frequency of 8-12 Hz due to the low-
er inertia of the hand14. Arm and leg tremor 
frequency are 5.2 Hz and 3.8 Hz respective-
ly15. Postural and kinetic wrist tremor in PD 
patients have a prominent coherence peak 
at 5-8 Hz, which is distinguishable from the 
8-12 Hz peak of healthy controls16. These 
findings suggest a need to identify specific 
parameters through which assessment of 
tremor is independent of different types of 
tremor and of different body segments.

A general problem with the clinical rating of 
TS is the subjectivity due to inter-rater and 
patient self-reporting variability17,18. Inter-
rater reliability for the TRS in ET patients has 
a Kappa statistic of k=0.53 (k=1 means com-
plete agreement and k=0 means no agree-
ment) for postural and action tremor and 
k=0.41 for handwriting8. Quantitative meas-
urement of tremor is objective and context 
independent and could improve this low re-
liability. However, the bridge between these 
measurements and the commonly-used TRS 
clinical scale has not been well established. 

Quantitative data collected during standard 
clinical tests have been used to classify on, 
off, and dyskinetic states in PD patients19 
or to classify the UPDRS score20. However, 
these methods require lengthy procedures 
for the patient and measurements from 
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many different sensors and body segments. 
A link between quantitative data and clini-
cal ratings specifically for tremor assess-
ment would not have these drawbacks and 
still provide clinicians valuable information. 
Therefore, the study aim was to capture ob-
jective tremor data, quantify TS from the 
data, and assess the ability of different com-
putational methods to classify TS by match-
ing them to clinical diagnostic assessments.

Material and methods

Participant description
This study was approved by Washington 
State University Institutional Review Board 
(IRB). Patients signed both informed consent 
(IC) and The Health Insurance Portability 
and Accountability Act (HIPAA) authoriza-
tion forms. Ten participants were selected 
at the clinics, Northwest Neurology and 

Inland Neurosurgery and Spine, three of 
which exhibited a history of ET, six of which 
exhibited a history of PD, and one of which 
exhibited a history of both PD and ET. Pres-
ence of predominant postural tremor in ad-
dition to a resting tremor, as observed in this 
last patient, has been described as a co-oc-
currence of PD and ET21. Two thirds of the 
patients were female. All patients had Deep 
Brain Stimulation (DBS) implants. 20 data 
sets were gathered; ten in which the par-
ticipants performed tasks with DBS on, and 
ten in which they performed the same tasks 
with DBS off. Although some patients used 
various medications to treat their PD mo-
tor symptoms, information regarding their 
medication type, dosage, and medication 
schedule was not considered relevant to the 
purpose of this study. Clinicians rated TS for 
each patient with DBS on and again for the 

Patient Disease DBS 
Ratings Rating errors 

Spiral SWSU 
Clinician 

(TRS) 
Spiral-

clinician 
SWSU-

clinician 
Spiral-
SWSU 

1 PD off 4 2 1 3 1 2 

1 PD on 0 0 0 0 0 0 

2 ET off 2 2 3 -1 -1 0 

2 ET on 2 1 2 0 -1 1 

3 PD&ET off 0 1 1 -1 0 -1 

3 PD&ET on 1 1 1 0 0 0 

4 PD off 1 0 1 0 -1 1 

4 PD on 1 1 1 0 0 0 

5 PD off 1 1 1 0 0 0 

5 PD on 1 0 1 0 -1 1 

6 PD off 0 1 0 0 1 -1 

6 PD on 1 0 1 0 -1 1 

7 PD off no data 4 0 no data 4 no data 

7 PD on 1 1 1 0 0 0 

8 PD off 1 1 1 0 0 0 

8 PD on 1 0 0 1 0 1 

9 ET off 2 2 4 -2 -2 0 

9 ET on 1 0 1 0 -1 1 

10 ET off 4 3 4 0 -1 1 

10 ET on 4 2 4 0 -2 2 

 

Table 1. Comparison of tremor rating method results of patients taking part in the study; DBS=Deep 
brain stimulation; ET=Essential tremor; PD=Parkinson disease; SWSU=Shimmer wireless sensor unit; 
TRS= Fahn-Tolosa-Marin Tremor Rating Scale
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same patient with DBS off, prior to each set 
of tasks each patient performed. Clinically 
rated TS ranged from 0-4 with mean TS of 
1.40 for all patients under all conditions; 
0-4 with mean TS 1.20 for DBS on, and 0-4 
with mean 1.45 for DBS off (note TS is only 
rated on an integer scale in these methods). 
Participant description is listed in parallel to 
study results (Table 1).

Clinicians’ tremor rating method
Immediately prior to performing each set of 
tasks for this study, each patient was evalu-
ated by a clinician who rated their current 
clinical TS based on the TRS. A total of 
three clinicians participated in rating indi-
vidual patients; one neurosurgeon and two 
nurse practitioners. Participants were asked 
to perform four tasks using their dominant 
hand while seated. Tasks included repeated-
ly extending the arm full length then touch-
ing nose five times, holding hand at full 
horizontal extension for five seconds, rest-
ing hand in lap for five seconds, and trac-
ing a spiral print. During the spiral trace task, 
the patient traced a clinician-supplied spiral 
with a standard pen using the dominant 
hand. Clinicians established the clinical TS 
score on a scale from 0-4 for each patient at 
each condition (DBS on and DBS off) based 
on the patient’s performance on the tasks as 
described in the TRS5.

Deep brain stimulation device
A DBS device is a surgically implanted elec-
tronic device that emits low voltage pulses 
into the brain21,22 and has been shown to 
reduce tremor23,24. For each patient, a cli-
nician customizes the voltage, pulse width, 
electrode configuration, and frequency of 
the DBS signal to minimize tremor25,26.

A clinician adjusted the settings of each par-
ticipant’s DBS device to optimally reduce 
tremor prior to tasks participants performed 
with their DBS device turned on. Clinicians 
determined the optimum DBS setting by 
changing the setting, then observing the 
change in the clinical tasks used to classi-
fy TS. A lower TS score was interpreted as 
resulting from a more optimal DBS setting. 

DBS settings were not recorded because 
the effect of DBS on tremor is not a primary 
topic of interest in this study.

Hardware and software 
Four hardware devices were incorporated 
in this study: a gyroscope (an angular veloc-
ity sensor) contained in a Bluetooth wireless 
Shimmer unit, an Anoto digital pen, a laptop 
computer equipped with a Bluetooth receiver, 
and DBS devices specific to each patient. Data 
were collected from the Shimmer device via a 
Bluetooth link to the laptop, while the digital 
pen transmitted data to the laptop via a USB 
interface. Software used in the study included 
National Instruments Labview software, Weka 
machine learning tool, Adapx Capturx digital 
pen software, and Microsoft Excel.

The selection criteria for the Shimmer de-
vice were: low cost, wireless, containing 
a 3 axis gyroscope, lightweight, and small 
size. The Shimmer Wireless Sensor Unit 
(SWSU)27 is lightweight (15g) with a small 
form factor (50x2x12.5mm) suitable for PD 
and ET patients. The SWSU also supports 
wireless communication through Bluetooth 
and 802.15.4 radio.

Digital pen
Adapx’s CapturxTM system for digital paper 
and pen integrates standard digital pen tech-
nology with standard office software appli-
cations. Similar technology has been used 
in the medical field to quantify physical im-
pairment of drivers under the influence of 
alcohol28.  The pen records all the X-Y coor-
dinates that it traverses and uploads the data 
to a computer via a USB interface.

Experimental procedure
Participants with the SWSU strapped to 
their wrist were asked to perform the same 
set of four tasks used in the clinical evalua-
tion. Each set was performed twice by each 
participant: once with their DBS device on, 
once with it off. A period of 5 to 10 min-
utes between the first task (DBS on) and the 
second task (DBS off) was allowed for any 
residual effects of the DBS to wear off. Turn-
ing the DBS device off resulted in a visible 
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resting tremor in PD patients, which was al-
lowed to continue for about 2 minutes be-
fore beginning the second task.

Machine learning
Six classifiers were used: Random For-
est, Decision Tree, Nearest Neighbor (NN), 
Bayes, Multilayer Perceptron (MLP), and 
Support Vector Machine (SVM). In a deci-
sion tree classifier, entropy is measured as:
	 	 	 	 	 	
	 	 	 	            (1)

where S is the set of data points, “p+”  is the 
number of data points that belong to the 
positive class and ”p-” is the number of data 
points that belong to the negative class.

The information gain for each attribute is de-
scribed by the equation:

				                 (2)

where Values(A) is the set of all possible val-
ues for feature A. Gain(S,A) measures how 
well a given feature separates the training 
examples according to their target classifica-
tion29. We used the J48 decision tree pro-
vided with the Weka software distribution 
to classify TS.

Random Forest is an ensemble classifier that 
consists of many decision trees and outputs 
the most popular class. A tree is grown from 
independent random vectors using a train-
ing set, resulting in a classifier. After a large 
number of trees is generated, random for-
est outputs the class that is the mode of the 
class’s output by individual trees30.

NN calculates instances using Euclidean 
distance and correspond to points in an n-
dimensional space. The algorithm assigns a 
class label to a data point that represents the 
most common value among the k training 
examples nearest to the data point31. We 
used the IBK scheme from Weka with pa-
rameter n=1 in our experiment.

SVM maximizes the margin between the 
training examples and the class boundary.  

SVM generates a hyperplane which pro-
vides a class label for each data point de-
scribed by a set of feature values32.

Artificial Neural Networks (ANNs) are com-
putational models mimicking a neuronal 
organizational structure33. ANNs are built 
from an interconnected set of sample units, 
which takes a number of real-valued inputs 
and produces a single real-valued output31. 
Using back propagation, ANN minimizes 
the squared error between the network 
output and target values. We applied this 
technique by using Weka’s MLP algorithm 
to classify TS.

Naïve Bayes Classifier is a probabilistic clas-
sifier which assumes the presence of a par-
ticular feature of a class is independent of 
other features. It learns a classification label 
by mapping features with Bayes’ theorem:
	  					   
				                 (3)

where T represents the tremor class label 
and F represents the features values. P(ti) is 
estimated by counting the frequency with 
which each target value ti occurs in the 
training data. P(F) is calculated from the 
frequency of feature values. Based on the 
simplifying assumption that feature values 
are independent given the target values, the 
probability of observing the features is the 
product of the probabilities for the individ-
ual features34.

Signal analysis
The SWSU signal processing overview (Fig-
ure 1) shows that data were gathered for 
three axes: yaw (perpendicular to the arm 
with positive pointing away from the back 
of the hand), pitch (perpendicular to the arm 
with positive pointing to the right), and roll 
(aligned with the arm with positive pointing 
away from the body). The gyroscope range 
for each axis is +/- 500º/s. The raw gyroscope 
data for each axis, in °/s, the power spectral 
density (PSD) for each axis, in (°/s)2 / Hz, the 
peak frequency and magnitude for each axis, 
the RMS value for each axis and the TS were 
recorded by the computer.
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The TS was calculated using an RMS method 
with a 5s time window. The RMS for each 
gyroscope signal was calculated for a finite 
series {xt+xt+1+xt+2+xt+n} using (4), where n 
designated the number of signals in the finite 
series. Data were sampled at 100Hz, but only 
written to file at 10Hz in order to reduce file 
size. Because PD tremor usually lasts at least 
a few seconds, selecting a short time window 
(less than 1s) could increase TS scores and 
give false positives. Selecting a larger time 
window, such as 10s, would reduce the TS 
resolution35. The RMS values for each axis 
are used to calculate TS which has units of 
(°/s) and a range of 0 to 4, where 0 represents 
no tremor and 4 represents severe tremor.

TS was scaled to a 0-4 scale based on maxi-
mum and minimum RMS values recorded 
for tremor.

We studied the effect of combinations of 
different features and different algorithms 
on the accuracy of computing TS. Each data 
point used to train and test a classifier was 
treated as an instance. We processed the 
six features from the gyroscope data in two 
different ways prior to applying machine 
learning algorithms. We first defined each 
instance as a combination of 10 samples 
in a 1s time window. To convert 10 sam-
ples into one data point, we calculated root 
mean square values for each of the six data 

features over 10 samples. 
As an alternate approach, 
we considered each data 
feature as an instance, 
i.e., each sample at in-
terval of 0.1s from the 
triaxial gyroscope was 
considered one instance. 
This instance was differ-
ent because instead of 
averaging over 10 sam-
ples, each gyroscope-re-
corded feature is its own 
instance.

Using 10-fold cross validation, the accuracy 
of each classifier in classifying TS was ob-
tained by comparing the categorizations of 
the learned classifier to the clinicians’ evalu-
ation. A cross-validation approach was used 
to estimate how accurately a model would 
perform in practice by separating the data-
set into training and validation sets. Analysis 
was performed based on the data used for 
training and the result is validated on valida-
tion or test data set. To reduce variability, k-
fold cross-validation approach was used in 
which cross validation was performed k dif-
ferent times, each time using a different par-
titioning of the data into training and valida-
tion sets. The results were then averaged31. 
We used the machine learning tool Weka 
[36] to perform 10-fold cross-validation ap-
proach on tri-axial gyroscope data for the six 
different classifiers.

In a second approach to measuring TS, we 
analyzed the patient’s digital pen tracings of 
a printed Archimedes spiral. The printed spi-
ral was generated by the Archimedes spiral 
equation (5), where the coefficient of offset 
(α) is a positive real number defining the 
magnitude θ increases for a given r. For the 
printed spiral, α=10.07.
			       			 
				                 (5)

Successive spiral tracing data points were 
compared to the printed data points that 
were defined by (5) and linearized by (6).

Figure 1. Shimmer wireless sensor unit signal processing
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Prior to analysis, we linearized both the 
printed and traced spirals by plotting spiral 
radius (r) vs. angle (θ), which were derived 
from x and y coordinates recorded from the 
pen in the case of the traced spiral. The ra-
dius r was calculated as shown in (6).

			       	  		
				                 (6)

θ was calculated as shown in (7) from the 
polar expression where x0 and y0 were the 
spiral center coordinates.
				        		
				                 (7)

θ was returned as a series of increasing or 
decreasing positive or negative values de-
pending on the Cartesian quadrant in which 
the data were recorded. Consequently, θ 
was recalculated by defining the active 
quadrant from the change in sign and value 
of θ, then adding the radian angle θ from 
the previous iteration. The result was a con-
sistent progression of θ that correctly corre-
sponded to the angular progression of θ on 
the spiral.

To determine a TS score for each spiral trac-
ing, we calculated from the linearized pen 
tracing data, r vs. θ, five factors: maximum 
difference between the radius of the printed 
spiral and the tracing (Δrmax), the average 
radius difference between the printed spiral 
and tracing radius (Δravg), the square of the 
Pearson product moment correlation coef-
ficient for tracing r and θ data points (R2), 
the RMS of the radius difference, and the 
standard deviation (σ) of the radius differ-
ence between printed spiral and tracing37. 
We derived equations scaling each of the 
above factors to a 5-point TS scale from four 
spiral tracings rated for TS by plotting each 
factor vs. TS rating for that trace, then fitting 
a best-fit curve to data in Excel (Figure 2). 
This method resulted in five equations scal-
ing TS from 0-4 for each of the five factors. 
We averaged the five tremor ratings derived 
from each of the five factors characterizing 
deviation from that spiral tracing to obtain 
a single rating of TS. This averaged TS rat-

ing was then rounded to the nearest whole 
number between 0 and 4. The resulting TS 
score was compared to the clinician’s rating 
for the patient to determine the ability of the 
system to classify the same level of tremor 
the clinicians identified.

Results

TS ratings from the Shimmer, machine learn-
ing approach, and digital pen data analysis 
were compared to the clinician’s tremor rat-
ing for each patient under each condition 
(DBS on or off) (Table 1). The accuracies of 
all three methods were compared to deter-
mine the most accurate method.

Comparison of accuracy was obtained for 
Random Forest, Decision Tree, Nearest 
Neighbor (NN), Bayes, Multilayer Percep-
tron (MLP), and Support Vector Machine 
(SVM) for both time-segmented data and 
raw data (Figure 3).

The accuracy of each classification method 
is reported for the entire data set, rather than 
for individual participants, due to the nature 

Entropy�S�=-p+ log2 p+ -p- log2 p-  

 

Gain�S,A�=Entropy�S�- � |Sv|
S

Entropy(Sv)
v∈Values(A)

 

 

argmaxti∈TP�ti|F�= P�F|ti�P(ti)
P(F)

 

 

xrms=�xt
2+xt+1

2 +xt+2
2 +xt+n

2

n
		  

 

θ= α *r   

 

r =�(x - x0)2 + (y - y0)2  

 

θ = tan
(y - y0 )

(x - x0 )
   

Entropy�S�=-p+ log2 p+ -p- log2 p-  

 

Gain�S,A�=Entropy�S�- � |Sv|
S

Entropy(Sv)
v∈Values(A)

 

 

argmaxti∈TP�ti|F�= P�F|ti�P(ti)
P(F)

 

 

xrms=�xt
2+xt+1

2 +xt+2
2 +xt+n

2

n
		  

 

θ= α *r   

 

r =�(x - x0)2 + (y - y0)2  

 

θ = tan
(y - y0 )

(x - x0 )
   

Figure 2. Digital pen tremor scaling

Figure 3. Machine learning accuracy
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of 10-fold cross evaluation. The best value 
of accuracy has been obtained using a deci-
sion tree classifier on raw data: 82%. 

Spiral tracings (Figure 4), were linearized 
and plotted versus the printed spiral (Figure 
5). The numerical analysis methods were ap-
plied to each linearized spiral trace to deter-
mine a tremor rating. Tremor rating for pa-
tient 5 with DBS off, differs greatly from that 
of patient 5 with DBS on (Table 2). In both 
tables, each type of tracing deviation (Δrmax, 
Δravg, etc.) is listed for that tracing above 
the scaled TS score for that factor with the 
tremor rating averaged from the five scaled 
tremor severities. 

Digital pen tracings yielded a match to clini-
cians’ ratings with 74% accuracy.

We identified one outlier that 
was removed from the data 
set. Digital pen spiral tracing 
for one patient displayed very 
high tremor with tracings off 
the page due to tremor, yielding 
a TS rating of 4, as assigned by 
digital pen data analysis. How-
ever, when the clinician rated 
the patient, the patient traced a 
clinician-provided spiral with a 
standard pen, pressing his hand 
hard against the writing surface. 

Parameter 
Spiral Trace Deviation Factors 

TS Rating 
∆r max ∆r avg R2 RMS SD 

DBS= off 
Patient spiral trace data 63.46 16.05 0.97 21.34 14.07  
Decimal TS average of 5 deviation 
ratings 

1.69 1.27 0.86 1.37 1.58 1.35 

Rounded TS rating      1 
DBS=on 

Patient spiral trace data 26.75 11.03 0.99 13.32 7.47  
Decimal TS average of 5 deviation 0.51 0.80 0.67 0.77 0.74 0.70 
ratings       
Rounded TS rating      1 

 

Table 2. Tremor severity (TS) for digital pen spiral trace in patient 5; Δr max= maximum difference be-
tween the radius of the printed spiral and the tracing; Δr avg= average radius difference between the 
printed spiral and tracing radius; R2= square of the Pearson product moment correlation coefficient for 
tracing r (radius) and θ (angle) data points; RMS= root mean square of the radius difference; SD= stand-
ard deviation of the radius difference between printed spiral and tracing; DBS= Deep brain stimulation

Figure 4. Spiral trace of patient 5, Deep brain 
stimulation off, Parkinson Disease

Figure 5. Linearized spiral trace of patient 5, Deep brain stimula-
tion off, Parkinson Disease
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This effectively dampened the tremor during 
the clinician-provided spiral trace and yield-
ed a clinician tremor rating of 1. For all other 
tracings, it was insured that the patient did 
not press his hand hard against the paper. 
Because this one patient kept his hand off 
the paper during the digital pen spiral trace, 
this data collection was not conducted in 
the same manner as the others, and we con-
cluded that data for patient 1 DBS off should 
be discarded as an outlier. Removing this 
outlier, the digital pen yielded exact match 
accuracy to the clinicians’ rating of 78%.

Figure 6 shows the raw gyroscope data from 
the SWSU when patient 10 was resting. 
With the DBS device off the RMS value of 
the tremor was 23.35°/s and with the device 
on the RMS value was 11.21°/s. This showed 
a total RMS improvement of 12.14°/s when 
using DBS. These results parallel those of 
the literature, which report displacement 
RMS measured with accelerometers de-
creased by approximately half for DBS on 
vs. DBS off condition for medicated PD 
patients experiencing postural and kinetic 
tremor38. Frequency decreased by 0.8 Hz 
and power density of the tremor decreased 
by 25.26(°/s)2 / Hz when the DBS device 
was on (Figure 7). Figure 8 shows patient 7’s 
raw gyroscope data for the roll axis when 
the patient was resting. With DBS off, the 
RMS value of the tremor was 148.54°/s. 
With DBS on, the RMS value was 2.05°/s. 
This showed a total RMS improvement of 
146.49°/s when using the DBS device. Figure 
9 shows patient 7’s power spectral density 
for the roll axis when the patient was draw-
ing a spiral. With the DBS device off, a large 
power density of 779.18 (°/s)2 / Hz occurred 
at 3.8 Hz. By contrast, when the DBS was 
on, very little tremor was noticeable.

Using the RMS method, the tremor sever-
ity was matched to the clinician assessment 
42% of the time with the aforementioned 
outlier removed.

Discussion

We compared the spiral TS ratings with the 
clinicians’ TS ratings and the SWSU TS rat-

ings. Table 3 shows a match comparison for 
tremor ratings based on digital pen spiral 
tracings, SWSU data, and clinicians’ analysis 
for ten patients, both for the DBS off con-

Figure 6. Raw gyroscope data at rest of patient 10

Figure 7. Power spectral density roll axis, spiral 
trace of patient 10

Parameter Accuracy, %

Random Match Probability 20 
Machine Learning Exact Match 82 
Spiral-Clinician Exact Match; 
Outliers Removed 

78 

SWSU-Clinician Exact Match; 
Outliers Removed 

42 

Spiral-SWSU Exact Match; 
Outliers Removed 

44 

 

Table 3. Exact match accuracy
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dition and the DBS on condition, with one 
missing data set for patient 7 with DBS off.

SWSU TS ratings matched clinicians’ rat-
ings with 42% accuracy, digital pen 78%, 
and machine learning 82%. It is important 
to note that a value equal to 20% is due 
to random effect. These results represent a 
substantial improvement over the clinical 
inter-rater reliability for the TRS (Kappa sta-
tistic =~0.5)8. Because the machine learn-
ing algorithms used the clinical rating from 
three different raters as the target data, a 
match of 100% would not be expected due 
to inter-rater variability. Although the up-

per limit for matching clinical ratings was 
not established due to the limited number 
of subjects, the 82% match (machine learn-
ing algorithms) and 78% match (digital pen) 
shows that these methods have the capabil-
ity to provide more reliable assessments of 
the TRS scale.

Spiral to SWSU exact match accuracy was 
44%, demonstrating poor correspondence 
between the two rating methods. We con-
cluded that the RMS method applied to gy-
roscope method alone, at a sample rate of 
10 Hz, was not an adequate assessment tool 
for TS. However, the same data were useful 
in classifying TS using a random forest ma-
chine learning algorithm.

We chose to record SWSU data at 10 Hz 
even though we sampled data at 100 Hz 
with the device. Although we initially sam-
pled and recorded data at 100 Hz, we ob-
served from our data a peak PSD at about 4 
Hz and decreased the sample rate to 10 Hz 
in order to reduce file size. This methodol-
ogy has been used in previous studies. For 
example, Wu et al.16 reported a maximum 
concurrence peak below 4 Hz for postural 
and kinetic tremor in PD patients, with a 
lesser and secondary peak between 6 and 
8 Hz. While our sample rate of 10 Hz most 
likely captured the maximum PSD peak for 
tremor, some of the lesser PSD data that oc-
cur around 8 Hz may been lost. This could 
have contributed to our poor accuracy in 
matching clinical TS ratings with the Shim-
mer RMS method.

This study presents a feasible approach to 
bridge objective measurements of tremor 
to ratings (TRS) familiar to clinicians. Fur-
thermore, this approach used moderately 
demanding motor tasks in PD and ET pa-
tients who could accomplish these tasks 
with reasonable effort. However, due to the 
low number of samples (20 data sets from 
10 participants under two DBS conditions), 
the impact of these methods could be more 
clearly defined with the inclusion of addi-
tional participants.  Notably, our findings im-
ply that machine learning algorithms can re-

Figure 8. Raw gyroscope data roll axis at rest of 
patient 7

Figure 9. Power spectral density roll axis, spiral 
trace of patient 7
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liably classify TS in the wrist from gyroscope 
data into the same scale used by clinicians. 
Furthermore, the reliability could be further 
improved by incorporating digital pen data 
into the machine learning approach along 
with gyroscope data to achieve an even 
higher accuracy in the evaluation of TS.

Conclusions

Applying three computational methods to 
assess patient tremor, we discovered that we 

could match the qualitative clinical tremor 
rating 78% of the time with a digital pen 
spiral tracing analysis, 42% of the time with 
Shimmer data using RMS methods, and 82% 
of the time with a machine learning decision 
tree algorithm on gyroscope data. Combin-
ing machine learning with RMS tremor gy-
roscope data proved to be the most reliable 
method. This computational method has 
the potential to substantially increase the re-
liability of tremor assessment.
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