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O r i g i n a l

Automated detection of wandering patterns in 
people with dementia

Martino-Saltzman1 systematically evaluated the 
travel patterns of 40 nursing home residents with 
dementia, 24 of whom were identified by nurs-
ing staff as wanderers or suspected wanderers. 
The remaining 16 residents were non-wanderers. 
Travel was monitored continuously for 30 days 
and four basic travel patterns were observed: di-
rect travel, lapping, random travel, and pacing. 
Travel efficiency (percentage of direct travel) was 
significantly related to cognitive status, with inef-
ficient travel most prevalent in severely dement-
ed participants. The findings have facilitated fur-
ther research in geriatrics and have been used in 
various dementia-related studies. 

Travel paTTerns of pWD
First, inefficient travel (or wandering) patterns 
including lapping, pacing and random were op-
erationally used to define wandering behavior of 
People with Dementia (PWD). Clinically, wander-
ing is defined as a “syndrome of dementia-related 
locomotion behavior having a frequent, repetitive, 
temporally-disordered and/or spatially-disorient-
ed nature that is manifested in lapping, random 
and/or pacing patterns”2. This ‘comprehensive 

and integrated’ definition was proposed in 2007 
at the International Consortium for Research on 
Wandering on the basis of analysis and synthe-
sis of terms and definitions from 183 published 
papers. The provisional consensus definition of 
dementia-related wandering was proposed to 
guide knowledge development across fields.

Second, wandering patterns combined with oth-
er spatial and temporal parameters can identify 
different types of wanderers and provide useful 
information on the wanderer’s cognitive perfor-
mance. In a longitudinal study, Algase et al.3 vid-
eotaped ambulation episodes of 181 PWD and 
manually coded the wandering episodes (pacing, 
lapping, and random types). Parameters includ-
ing rate, duration, and time of the day of wander-
ing, drawn from the set of wandering episodes, 
were used to classify wanderers. Using principal 
component analysis, the authors distinguished 
three types of wanderers (classic, moderate, and 
subclinical). Cluster validation revealed differ-
ences between types of wanderers as well as 
non-wanderers in degree of cognitive impair-
ment, mobility, and health indices3. 
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Third, detailed findings from several medical 
studies4-8 lent evidence to the correlation of 
wandering patterns and cognitive performance. 
Random-pattern wandering is considered the 
most serious symptom in PWD, followed by lap-
ping and pacing. Increasing amounts of random-
pattern wandering reflect higher degree of global 
(bilateral) hippocampal damage in humans and 
serve as a potential marker for dementia pro-
gression4. Frequent lapping signifies a deteriorat-
ing ability to way-finding in PWD and can be 
used as a predictor for unilateral hippocampal 
damage5-6. Pacing is not associated with levels 
of cognitive impairment, but is more indicative 
of agitation and anxiety7-8. Direct patterns are 
efficient but their character changes might also 
indicate cognitive deficits. 

In the latest study9, Lee et al. explored the relation-
ship between observable emotional expression 
and wandering behavior of PWD. They found 
that positive emotional expression was positively 
related to wandering rates (wandering episodes 
per hour), whereas negative emotional expres-
sion and higher cognitive status were negatively 
related to wandering rates. Their results suggest 
that wandering behavior was related not only to 
cognition but also to emotional expression.

The neeD for an auTomaTeD algoriThm
The demand for an automated algorithm to 
classify travel patterns of PWD into direct and 
various modes of indirect travel arises from defi-
ciencies of efficient methods to recognize these 
patterns. 

In the clinical settings especially scientific en-
vironments, observational method is the most 
common (probably the only) approach to meas-
ure wandering behavior. Nursing scientists ap-
ply both direct and videotape observation tech-
niques to study wandering of PWD. In both cases, 
vigilant observers or coders (primarily under-
graduate nursing students) are hired to manually 
capture and document wandering episodes ac-
cording to a predefined protocol. These coders 
practise in advance and are retrained until they 
match the researchers’ coding standard. The pro-
tocol to capture wandering episodes is extracted 
as follows: “For every walking episode within 
each observation period, they (coders) identified 
and timed the start (i.e., three steps forward) and 
stop; i.e., after a period of walking momentum in 
any direction, there is (i) no stepping action or (ii) 
no forward momentum for 15s while participants 
steps in place. At the stop, coders then assigned 
a code for the pattern (random, lapping, pacing, 
direct). All (except direct) represented wander-
ing”10. Wandering is then quantified by a rate pa-
rameter: number of wandering episodes per hour.

While observational method offers the greatest 
detail and information on aspects of wandering, 
it has several drawbacks. First of all, such meth-
od is suitable for institutional or research use and 
is restricted to studying mainly one patient at a 
time. Secondly, it requires time, labor, and mon-
ey to hire and train coders. Thirdly, the tedious 
coding process is highly error-prone if the coder 
has to continuously observe the subject over a 
long period of time. Lastly, direct observation 
or cameras in people’s homes in particular are 
considered extremely invasive and are viewed 
negatively. These drawbacks render this ap-
proach unsuitable for long term monitoring and 
management of wandering behavior.

In long-term care settings, wandering patterns 
are usually overlooked by care staff due to insuffi-
cient knowledge of wandering and unawareness 
of its negative effects on the subject’s well-being. 
About 66% and 94% of PWD in developing and 
developed countries, respectively, are cared by 
informal caregivers, many of whom do not re-
ceive dementia or wandering-related education, 
training, and support services11. Moreover, there 
is a shortage of caregivers for PWD and they 
have to juggle multiple responsibilities and du-
ties. Therefore, care staff generally cannot afford 
the time to surveillance wandering behavior of 
PWD12. In a survey of caregivers for PWD, wan-
dering was listed as one of the top three most dif-
ficult behavioral problems to manage especially 
when this behavior occurs several times a day13. 

Previous studies have used ultra wideband radio 
frequency identification (UWB-RIFD) technol-
ogy to measure two specific wandering behav-
iors: lingering near exit doorways and shadowing 
others who may exit14,15. In this paper, we auto-
matically classify direct and various modes of in-
direct travel from room-to-room movement data 
collected by an active RFID system16,17. To the 
best of our knowledge, there was no such com-
puterized program prior to our work. We believe 
the methodology is able to assist clinicians and 
care professionals in managing wandering be-
havior of PWD, without incurring the time and 
financial costs of observational method and the 
tedious pattern coding process associated with it. 

paper sTrucTure
This paper is structured as follows. First, we 
introduce the travel patterns constituting wan-
dering in Martino-Saltzman (MS) model and 
describe the dataset as well as the ground truth 
used in the experiments. Second, we present a 
machine learning approach for classifying travel 
patterns based on eight classical algorithms. We 
also elaborate on the experiments and discuss 
the performance of all the employed algorithms. 
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Third, we present an improved deterministic pre-
defined tree-based algorithm to classify travel 
patterns and its performance results. Finally, we 
conclude the paper and plan future works.

BackgrounD anD DaTaseT
MS model of wandering patterns
This section presents a typology of wandering. 
We will first define three concepts: location, 
movement, and episode. A ‘location’ may be 
represented in terms of 3-D space coordinates 
or broad regions (e.g. kitchen, dining room, etc.). 
A ‘movement’ is defined as moving from the 
present location to the next immediate location. 
Each ‘travel episode’, be it wandering or non-
wandering, consists of one or more consecutive 
movements. Each episode has a start location 
and a stop location.

For convenience, we denote L1, L2, L3, and L4 
as locations. Martino-Saltzman et al.1 observed 
the spatial movements of both wanderers and 
non-wanderers with dementia and identified 
four patterns of independent travel in wandering 
subjects (Figure 1): 
(i) Direct: a single straightforward path from one 
location to another without diversion. An epi-
sode comprising two or more consecutive direct 
paths to different locations is also considered 
as direct. A travel path that passes through the 
same location twice or more is not considered 
direct because one of the sub-trajectories is re-
dundant. For example, a direct path from L1 to 
L4 includes passing through L2 and L3. Thus an 
episode involving L1L2L3L4 is direct. If an episode 
takes the path L1L2L3L1L2L3L4, the first sub-path 
from L1 to L3 and back to L1 is considered redun-
dant and inefficient. Therefore, direct pattern 
would comprise single straightforward path or a 
path that moves through different locations. An 
episode with the path L1L2L1 is direct.
(ii) Pacing: a repeated path back and forth be-
tween two locations. We specify that a pacing 
pattern would include more than two (at least 
three) consecutive to-and-fro movements. For 
example, the path L1L2L1L2 is classified as pacing 
since it has three repetitive movements: L1 to L2, 
L2 back to L1, and L1 to L2 again.
(iii) Lapping: a repeated circular path involving at 
least three locations3. A lapping pattern would 
contain at least two repeated circular routes in-
volving at least three different locations, either 
in the same or opposite direction. For instance, 
the paths L1L2L3L1L4L1L2L3L1(same direction) and 
L1L2L3L4L3L2L1 (opposite direction) are consid-
ered as lapping;
(iv) Random: a continuous path with multiple lo-
cations in no particular order. A random pattern 
must not be a direct pattern and contain at least 
one location which is repeated at least twice. 

Due to these two conditions, lapping and pacing 
patterns are subsets of random patterns.

With respect to distance travelled and time 
taken, direct pattern is efficient travel and is not 
regarded as wandering1. The other three patterns 
(random, lapping, and pacing) are inefficient 
and they constitute different types of wandering. 
Martino-Saltzman framework has been widely 
used by many experts1-7 in the field of geron-
tology and nursing research to study wander-
ing behavior of PWD. It has influenced further 
research and is one of the very few empirical 
typologies to measure and quantify wandering4. 
Subsequent studies5-8 have demonstrated that 
affected wanderers often exhibit more than one 
inefficient pattern. 

Dataset
Subjects’ characteristics
Movement datasets of five nursing home resi-
dents with different stages of dementia are used 
in our study. This includes 2 males and 3 females 
of 72.4±8.4 years of age. The Mini-Mental State 
Examination showed signs of dementia in all five 
subjects (2 were diagnosed as having vascular 
dementia, the other 3 Alzheimer’s disease)16,17. 
All could walk independently16. 

Subjects’ movement data
The movement data were collected by Makimo-
to et al.16,17. Active RFID activity monitoring sys-
tems (Power Tag, Matrix Co. 6-1-2 Nishi Tenma, 
Kita-ku, Osaka, 530-0047 Japan) were installed 
at two dementia care units in Japan and Korea. 
Antennas were set up on the ceilings of all the 
rooms in the units. Individual RFID tags (meas-
uring 2.8 cm x 4.2 cm x 0.68 cm) were worn 
by the subjects in the back collar of their shirts. 
A personal computer system then recorded the 
movement information including the tag ID, the 
tag receiver ID, time and date. Each tag receiver 

2) Pacing

3) Lapping 4) Random

Figure 1. Travel patterns of nursing home wanderers; 
The plan view of a room is represented by a rec-
tangle; Smaller rectangles represent different parts of 
the room and the dash lines show the travel paths
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ID (or location ID) uniquely identified the room 
visited by the monitored subject. 

The Power Tag system (Table 1) is able to monitor 
the whereabouts of a subject and the rhythm of 
daily activities such as walking distance per day 
and frequency of toileting. Makimoto et al.16,17 
employed the system to record the room-to-room 
movements of monitored subjects as they moved 
within the care units over a 24-hour period.

The graphical representation of the movements 
for each subject (labelled as A, B, C, D, and E) is 
reproduced in Appendix A. Subjects A, B and E 
were monitored in the same unit in Japan where-
as subjects C and D were monitored in another 
same unit in Korea. 

We label the semantic locations of the two units 
by integer numbers for computational purposes 
(Table 2).

Ground truth estimation
In total, 120 hours (24hrs per subject 
x 5 subjects) of data were recorded by 
Makimoto et al.16 This original move-
ment dataset consists of 1163 instances. 
Each instance has four attributes: the 
time, date, tag ID and location ID.

Two steps are needed to establish the 
ground truth. The first step is to extract 
every travel episode bounded by its start 
and stop locations. This is done using an 
automatic episode segmentation algo-
rithm. The second step is to apply MS 
model manually to map each episode to 
one of the four patterns: direct, random, 
lapping, or pacing. 

Step 1: Automatic episode segmenta-
tion (temporal information was used in this step). 
To segment an episode, we need to identify its 
start location and stop location. Ideally, an ac-
celerometer attached to the monitored subject 
can be used to accurately determine the start/
stop locations of each episode. However, even 
though such motion information is not available 
in the movement records used in this study, we 
are able to obtain good estimation of the start/
stop locations from the temporal information.

For each subject’s dataset, we assumed the loca-
tion of the first data instance was the start loca-
tion of the first episode. The start location of any 
subsequent episode would be the immediate 
location after the stop location of the previous 
episode. The stop location of an episode was de-
fined as one where the subject spent more than 
15s (same as the value used in standard protocol 
by gerontologists10).

Suppose the RIFD system recorded that the sub-
ject entered location L1 at time t1 and entered 
the next immediate location L2 (after being at L1) 
at time t2 (L1#L2 and t1<t2). The total travel time 
from L1 to L2 (t2–t1) is bounded by: 

t2-t1 ≤ totalTh = 15s + maximumDirectTravelTime 
+ wanderingOffsetTime                          [1]

With:
15s = stop threshold; maximumDirectTravelTime 
= the maximum time to travel directly from L1 to 
L2; wanderingOffsetTime = the time the subject 
may wander on the direct path between two fur-
thest locations. It is zero if there is no wandering. 

Therefore, whether or not L1 is the stop location 
of an episode can be easily determined by com-
paring the total travel time (t2-t1) with totalTh. 

Table 1.  Specifications of the Power Tag RFID system31 
Tag receiver 

Receiving frequency (RF) 304.2, 309.9, 314.26 MHz 
Number of RF inputs 1 
Type of modulation Frequency shift keying 
Signal input sensitivity -90dBm to -30dBm 
Data output RS232C 9600bps 
Power supply AC 90/110V 50/60Hz 

Trigger generator 
Output 1 Arms/93.75kHz 
Power supply DC 12V/2A AC Adapter 

RF tag 
Output frequency 304.2MHz or 309.9MHz or 314.26MHz 
Modulation FSK 60kHzp-p 
RF output level 500i V/m at 3m offset (Weak Radio Wave) 
Wake up signal >100m Vp-p 93.75kHz by 

electromagnetic 
Signal rate 93.75kps 
Power supply DC3.3V ML1220 rechargeable battery 

 

Table 2. Numerical labels of semantic locations in care 
units in Japan and Korea 

Japan Korea 
Location Label Location Label 
Room 303 1 Room 5304 1 
Toilet 2 Toilet 5304 2 
Function hall 3 Activity Room 2 3 
Dining room 4 Corridor 5301 4 
Room 302 5 Corridor activity 

room 2 
5 

Bathroom 6 Nursing station 6 
Room 301 7 Corridor 5306 7 
Room 305 8 Room 5306 8 
Emergency exit (ee) 9 Corridor 5309 9 
  Activity room 1 10 
  Corridor 5303 11 
  Elevator 12 
  Corridor 

undefined 
13 
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In indoor environments such as dementia care 
units16,17, the maximumDirectTravelTime is 
bounded by the ratio of the maximum distance 
between neighboring locations (rooms) and the 
minimum walking speed of the subject. The 
walking speed of a subject can be retrieved from 
the RFID system. For the current dataset, we 
used the empirically obtained threshold: 
totalTh=55s (maximum distance=13m, mini-
mum walking speed=0.53m/s, and wander-
ingOffsetTime=15s) to do automatic episode 
segmentation.

We apply the technique described above to all 
five subjects’ datasets. In total, 220 travel epi-
sodes were identified (40±30 episodes per sub-
ject). Each travel episode consists of a sequence 
of locations the subject had travelled.

Step 2: Manual classification of an episode’s 
travel pattern (spatial information was used in 
this step). Based on the sequences of locations 
travelled within an episode, we manually classi-
fied the travel patterns of each episode into one 
of four types: direct, random, lapping, and pac-
ing. We observed the sequence of travelled loca-
tions and the contextual information (e.g. meal 
times, layout of the care unit, the intended des-
tination the subject wanted to travel to) to distin-
guish between direct and inefficient travels. If it 
was an inefficient travel, we further checked for 
pacing, lapping, or random pattern. The pattern 
of the episode was then concluded accordingly 
(Table 3). If there were multiple patterns within 
an episode, the concluding pattern was the one 
which had the most number or the most severe 

one (ascending order of patterns’ severity: pac-
ing, lapping, and random). These manually clas-
sified results serve as ground truths for evalua-
tion of the automated algorithms. 

machine learning approach
The machine learning approach for classifying 
travel patterns consists of two stages: (i) feature 
extraction, and (ii) classification.
 
Feature extraction
From the location sequence, we compute four 
representative features for each travel episode. 
The features are entropy (F1), repeated locations 
(F2), repeated directions (F3), opposite directions 
(F4). 

The first feature, F1 measures the entropy of each 
episode. Entropy is the average information or 
unpredictability in a random variable. Therefore, 
entropy can be used to represent the random-
ness of movement in an episode. 

The second feature, F2 aims to distinguish direct 
pattern from other types of patterns by counting 
the number of repeated locations in an episode. 
This is based on the fact that if a person keeps 
revisiting a number of locations in an episode 
of continuous movements, that episode is con-
sidered inefficient travel. Pacing and lapping 
patterns are repetitive movements in back-and-
forth and circular manner. For these two types 
of patterns, not only are the locations of travel 
repeated but also the directions of movement (or 
travel). Therefore, we use two features, F3 and 
F4, to represent the repetitiveness of travel di-

Table 3. Ground truth estimation of the 4 travel patterns of the 5 subjects 

Statistics 
Subject 

A B C D E All 
 Direct 

Number of episodes 29 22 40 13 22 126 
Range, s 14–127 36–141 13–89 12–31 9-84 9–141 
Mean±SD 39±37 45±49 28±27 18±8 23±26 32±34 

 Pacing 
Number of episodes 2 4 10 1 0 17 
Range, s 135-156 61–326 26–115 66 0 26–326 
Mean±SD 146±15 169±112 70±24   102±69 

 Lapping 
Number of episodes 1 5 34 1 5 46 
Range, s 386 182–781 70–1545 105 102–234 70–1545 
Mean±SD  423±223 351±309  179±53 335±282 

 Random 
Number of episodes 0 5 13 7 6 31 
Range, s 0 256–674 87–173 70-220 130–430 70–674 
Mean±SD  383±168 126±27 103±52 239±124 184±132 
 Total 
Number of episodes 32 36 97 22 33 220 
Range, s 14–386 36–781 13–1545 12–220 9–430 9-1545 
Mean±SD 56±75 158±191 159±233 51±50 86±108 122±186 
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rections in each episode. Travel direction is the 
directional vector of two consecutive locations.

F3 counts the number of repeated travel direc-
tions in each episode. F4 counts the number of 
pairs of opposite travel directions. For example, 
in an episode, travel directions of two move-
ments - one from location L1 to location L2 and 
another from location L2 back to location L1 - are 
considered a pair of opposite travel direction. 
Feature F4 is needed because the subject can 
pace and lap in opposite directions. 

Now, we provide details on how the features are 
measured. Suppose that an episode with n-loca-
tion sequence in a chronological order is repre-
sented as a vector
 L = (L1,L2,…,Ln),                                [2]

whereas      

and Li are labels from Table 2. 

From the vector L, we obtain:
-The direction vector
       D=((L1,L2),(L2,L3),…,(Ln-1,Ln))                     [3]

-The set of distinct elements in vector L,
       SL={Li, 1≤i≤n | Li ∈ L}                                [4]

-The set of distinct elements in vector D,
        SD={(Li,Li+1),1≤i≤n-1 | (Li,Li+1) ⊆ D}             [5]

-The frequency of occurrence of each element in
SL, f i = (number of occurrences of Li in L)/n, 1≤i≤n   [6]

Then, the four features are calculated as follows. 
-Feature F1 is the entropy of the episode:

  𝐹𝐹1 =  − ∑ 𝑓𝑓𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                      [ ] 

-Feature F2 counts the total number of locations 
visited which are repeated. This is equal to the 
total number of elements n minus the number 
of unique elements in L (i.e. the cardinality of SL). 
        F2 = n - ‖SL‖                                           [8]

-Similar to F2, F3 is calculated as:
           F3 = n - 1 - ‖SD‖                                                     [9]

-F4 is meant to distinguish travel in the same or 
opposite directions.
F4 = ‖{1≤i≤n-1 |∃ j,1≤i<j≤n-1 ∧ Li=Lj+1 ∧ L(i+1)=Lj}‖    
                 [10]

Feature selection and classification
Experiments and evaluation
We have experimented with different combina-
tions of the four features, and found that the best 
results were achieved by using all four features 
for classification. We tested eight classical ma-
chine learning algorithms including NB, MLP, 
C4.5, RF, LB, BAG, k-NN, and SVM. All algo-
rithms were tested using Weka freeware18. The 
best performing configurations of all the eight 
classifiers are also reported. 

NB classifier is based on Bayes’s theorem with 
the assumption that the effect of a particular fea-
ture on a given class is independent of other fea-
tures. It is made to simplify the computation in-
volved and, in this sense, is called ‘naïve’. Given a 
sample X, the classifier will predict that X belongs 
to the class having the highest posterior probabil-
ity, conditioned on X. That is X is predicted to 
belong to the class Ci if and only if it is the class 
that maximizes P(X|Ci)P(Ci). P(Ci) is estimated by 
counting the frequency with which each class Ci 
occurs in the training data. Based on the assump-
tion that features are independent given the class, 
P(X|Ci) is the product of the probabilities for the 
individual features given class Ci

19.

MLP is a neural network that mimics a neuronal 
organizational structure. It uses back propaga-
tion to train the network aiming to minimize the 
squared error between the network output and 
target values20. The network configuration used 
in our experiments is learning rate=0.3, momen-
tum=0.2, epochs=500. 

Decision trees represent the set of classifica-
tion rules in the form of a tree. It uses informa-
tion gain to measure how well a given feature 
separates the training examples into their target 
class21. We used the J48 Decision trees provided 
with the Weka software to classify travel pat-
terns. The configuration used in our experiments 
is confidence factor=0.25, the minimum number 
of instances per leaf=2. 

RF is an ensemble classifier that consists of many 
decision trees and outputs the most popular 
class. A tree is grown from independent random 
vectors using a training set, resulting in a classi-
fier. After a large number of trees is generated, 
random forest outputs the class that is the mode 
of the class’s output by individual trees22,23. The 
configuration used in our experiments is the 
number of trees to be generated=10, the random 
number seed=1, the number of attributes to be 
used in random selection=0. 

LB24 and BAG25 are ensemble methods that in-
clude multiple ‘base’ classifiers, each of which 
covers the complete input space. Each based 
classifier is trained on a slightly different train-
ing set and the predictions or classifications of 
all classifiers are then aggregated to produce the 
single output. The simplest way to aggregate is 
to take a vote (e.g. a weighted vote). BAG and LB 
both adopt this approach but they derive the in-
dividual classifiers in different ways. In BAG, the 
classifiers receive equal weight, whereas in LB 
weighting is used to give more influence to the 
more successful classifiers. The base classifier 
used in experiments with BAG is the fast deci-

 𝐿𝐿𝑖𝑖 ≠ 𝐿𝐿𝑖𝑖+1 , 𝑖𝑖 = 1, 𝑛𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                      
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sion tree learner, and the model trees in experi-
ments with LB used M5Rules.

k-NN calculates instances using Euclidean dis-
tance and corresponds to points in an n-dimen-
sional space. The algorithm assigns a class label 
to a data point that represents the most common 
value among the k training examples nearest to 
the data point22. We used k=1 in our experiment.

SVM maximizes the margin between the training 
examples and the class boundary. SVM gener-
ates a hyperplane which provides a class label 
for each data point described by a set of feature 
values26. The kernel used in our experiments is 
the normalized poly-kernel. 

The 10-fold stratified cross validation technique 
is applied and results are obtained in term of 
five validation metrics: precision, recall, specific-
ity, F1-measure, and latency. The classification 
performance is based on individual episodes of 
movements, i.e. for each episode the classifier 
output is compared to the reference annotation 
(the ground truth). 
For each type (class) of travel patterns, let’s call 
episodes of its class (in the ground truth) ‘posi-
tives’ and episodes not belonging to this class 

‘negatives’. 

Then, ‘positive’ episodes that are correctly (in-
correctly) labelled by the machine learning algo-
rithms are counted as True Positive (False Nega-
tive) (shortened as TP and FN) whereas ‘negative’ 
episodes that are classified by the algorithms 
as ‘negative’ episodes (‘positive’ episodes) are 
counted as True Negative (False Positive) (short-
en as TN and FP). 

We measure: 
(i) the precision (or Positive predictive value)
 Prec=TP/(TP+FP))               [11]
which represents the proportion of ‘positive’ 
classified episodes that are relevant;

(ii) the recall (True Positive Rate or sensitivity)  
 Reca=TP/(TP+FN)               [12]
which measures how good the classifier is at de-
tecting ‘positive’ episodes; 
(iii) the specificity (or True Negative Rate)  
 Spec=TN/(TN+FP)              [13]
which evaluates how good the classifier is at 
avoiding false alarms. 

F1-measure
 F1 = 2.Prec.Reca/(Prec+Reca)         [14]
takes into account the precision and recall rate 
for each class. 

In addition, we evaluate the algorithms in terms 
of classification latency, which is the time delay 
between the start of a travel episode in the refer-
ence dataset and the start of a detected (classi-
fied) wandering episode by the application.

To report the overall performance metrics, we 
take the weighted average (or weighted arithme-
tic mean) of these measures from all classes, i.e. 
weighting the measure of each class of patterns 
by the proportion of instances there are in that 
class. This is done to avoid the problem of inflat-
ing the accuracy or recall values of classes with 
high recall values but few instances. 

Feature selection
Better results are obtained by using all four fea-
tures (Table 4). Thus features F1, F2, F3 and F4 
are used in the subsequent experiments.

We also tried using common features including 
mean, standard deviation, and variance to classi-
fy travel patterns. Not surprisingly, these features 
do not represent the data well because the loca-
tion labels do not capture the spatial relations of 
the physical locations.
 
Classification results
We use confusion matrices of the eight classifiers 
to provide a more detailed picture of the errors 

Table 4. Evaluation of the classification algorithms in Experiment (Exp)1 , using the features F2-4 (repeated locations, 
repeated directions and opposite directions), and in Exp 2, using all 4 features (F1=entropy, added); NB= Naïve Bayes.; MLP= 
Multilayer Perceptron; C4.5= Pruned decision trees; RF= Random Forests; BAG=Bagging; LB=Logiboost ; k-NN=k-Nearest 
Neighbor; SVM=Support Vector Machine  

Criterion Exp 
Classifier 

NB MLP C4.5 RF BAG LB k-NN SVM 
Sensitivity / recall 1 77.7 84.5 90.0 91.4 89.5 91.4 91.8 84.1 

2 80.0 86.8 91.4 92.3 91.4 91.4 88.6 88.6 
Latency, s 1 0.01 0.24 0.01 0.02 0.01 0.03 0.01 0.04 

2 0.01 0.33 0.01 0.03 0.01 0.05 0.01 0.05 
Precision 1 76.2 82.9 90.7 91.3 90.9 91.2 91.7 80.8 

2 80.4 86.3 91.2 92.2 91.3 91.2 88.3 89.3 
Specificity 1 77.7 84.5 90.0 91.4 89.5 91.4 91.8 84.1 

2 80.0 86.8 91.4 92.3 91.4 91.4 88.6 88.6 
F1 measure 1 76.4 83.3 90.2 91.3 89.9 91.2 91.7 81.7 

2 87.8 85.6 91.2 92.2 91.4 91.3 88.1 88.6 
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Table 5. Confusion matrices of travel pat-
terns for the different classifiers: BAG 
(Bagging), C4.5 (Pruned decision trees), k-
NN (k-Nearest Neighbor), LB (Logiboost), 
MLP (Multilayer Perception), NB (Naïve 
Bayes), RF (Random Forests), and SVM 
(Support Vector Machine);  D=direct; 
P=pacing; L=lapping; R=random 

BAG 
Ground 

truth 
Classified as 

D P L R 
D 124 0 0 2 
P 1 12 2 2 
L 0 2 41 3 
R 2 0 5 24 

C4.5 
Ground 

truth 
Classified as 

D P L R 
D 126 0 0 0 
P 1 12 2 2 
L 0 3 40 3 
R 2 2 4 23 

k-NN 
Ground 

truth 
Classified as 

D P L R 
D 125 0 0 1 
P 3 12 1 1 
L 3 2 39 2 
R 8 0 4 19 

LB 
Ground 

truth 
Classified as 

D P L R 
D 125 0 0 1 
P 1 12 3 1 
L 0 3 39 4 
R 2 0 4 25 

MLP 
Ground 

truth 
Classified as 

D P L R 
D 125 0 0 1 
P 1 12 2 2 
L 0 1 43 2 
R 4 9 7 11 

NB 
Ground 

truth 
Classified as 

D P L R 
D 119 0 0 7 
P 8 7 1 1 
L 2 1 36 7 
R 16 0 1 14 

RF 
Ground 

truth 
Classified as 

D P L R 
D 125 0 0 1 
P 1 14 2 0 
L 0 2 41 3 
R 2 0 6 23 

SVM 
Ground 

truth 
Classified as 

D P L R 
D 120 0 6 0 
P 1 12 3 1 
L 1 1 41 3 
R 3 0 6 22 

 

Table 6. Results of  ‘Leave one subject out’ experiment 
Subject 
left out 

Episodes of wandering 
# Sensitivity Specificity Precision Latency  

A 32 1 1 1 0.01 
B 36 0.833 0.937 0.862 0.01 
C 97 0.897 0.974 0.924 0.01 
D 22 0.727 0.606 0.813 0.01 
E 33 0.909 0.929 0.928 0.01 

Weighted 
average  

220 0.873 0.889 0.905 0.01 

 
generated by the classification process (Table 5). 
The RF algorithm yields the best classification 
sensitivity or accuracy (92.3%). The RF algorithm 
indicated slightly higher accuracy compared to 
the decision trees algorithm. However, the deci-
sion trees algorithm is much simpler and trans-
parent in decision making process compared 
to the RF. The RF algorithm introduces a much 
higher complexity in the decision making pro-
cess, since the result is obtained using 10 deci-
sion trees and a mode voting procedure (i.e. the 
classified class is the mode of the classes output 
by individual trees).

The RF classification algorithm is also evaluated 
using the leave one subject out method. In each 
leave one subject out experiment, dataset of a 
subject is used for testing and the combined 
datasets of other four subjects are used for train-
ing. The sensitivity, specificity, precision, F-1 
measures per subject, for each leave one out 
experiment, along with the average statistics are 
presented in Table 6. The weighted average ac-
curacy for the leave one subject out experiment 
is 87.3%. 

Rationale
First of all we explain why classifiers based on 
decision trees produce high accuracy in clas-
sifying travel patterns. Figure 2 reproduces the 
pruned tree generated by the decision trees algo-
rithm. The leaves represent class labels or travel 
patterns, and branches represent conjunctions of 
features that lead to those class labels.

Figure 3 represents the number of repeated loca-
tions of the entire 220 episodes. It clearly shows 
that direct episodes are distinguished with other 
episodes because the amplitudes of most direct 
episodes are zero. Direct patterns are efficient 
travel; therefore, it is highly likely that there is no 
repeated location in the sequence of locations of 
direct episodes. Hence, using F2, we can easily 
separate episodes into two main groups: direct 
(marked with long dashed rounded rectangle) 
and non-direct. The main task now is to classify 
pacing, lapping, and random from non-direct 
episodes. 
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Using feature F1, we can discern pacing from 
lapping and random. Pacing is repetition move-
ments between two locations. Therefore, the 
occurrence frequency of each location should 
be equal. Thus, the entropy of pacing episodes 
should be constant or equal to one. This is ob-
viously shown in Figure 3b in which entropy 
of pacing episodes is one (marked with long 
dashed rounded rectangle) and entropy of lap-
ping and random episodes is more than one. 

The main task left now is to distinguish lapping 
and random from each other. Features F4 and 
F3 are mainly used for this task. In Figure 3c, al-
most half of lapping episodes are separated from 
random episodes. They are episodes whose 
amplitudes of F4 are above 2. These episodes 
are highlighted in the long dashed rounded rec-
tangle. Other lapping episodes, whose F4 values 
have the same amplitude range with the ones of 
random episodes, are highlighted in the rounded 
rectangle (Figure 3c). We have to discern these 
lapping episodes from random episodes. Re-
spectively, these lapping episodes are also indi-
cated using the rounded rectangle in Figure 3d. 
From this figure we can see that the amplitudes 
of feature F3 of these lapping episodes are more 
than one whereas the ones of random episodes 
are almost zero or below one. Hence, we can 
classify these lapping and random episodes 
into their corresponding classes. The classified 
random episodes are marked with long dashed 
rounded rectangle in Figure 3d.

Misclassifications and errors
Misclassifications are caused by three shortcom-
ings of the employed algorithms. 

First, they are not able to handle several multi-
pattern episodes. This occurred 29.4%, 31.6% 
and 32.0% respectively for the C4.5, RF and 
‘Leave one subject out’ experiments. Examples 

of multi-pattern episodes are (dining, hall, din-
ing, hall, toilet, hall, toilet) and (302, 301, bath, 
301, 302, 303, hall, dining, hall, 303, 302). The 
first episode comprises two sub-patterns: pacing 
between the dining room and function hall, and 
pacing between the hall and the toilet. The sec-
ond episode comprises two sub-patterns: lap-
ping in the opposite direction between rooms 
302, 301 and bath, and lapping in the opposite 
direction between rooms 302, 303, hall, and din-
ing. In these two multi-pattern episodes, some 
locations (‘hall’ in the first episode, ‘302’ and 

‘303’ in the second episode) belong to both pat-
terns, which the decision trees based algorithms 
do not recognize. Therefore, these algorithms 
misclassified the first episode as ‘lapping’ and 
the second episode as ‘random’. Another exam-
ple is (ee, 303, 302, 303, ee, toilet, hall, ee, 303, 
302, 301, 302, 303). 2 lapping sub-patterns (ee, 
303, 302, 303, ee) and (303, 302, 301, 302, 303) 
are separated by a direct sub-pattern (toilet, hall, 
ee). However, the algorithms did not recognize 
these and misclassified as random. 

Second, the algorithms are not adaptive to learn/
classify episodes with few or almost zero train-
ing instances. This was the case in 35.3%, 52.6% 
and 24.0% respectively in the three experiments. 
Examples of misclassified episodes caused by 
the shortcoming 2 are (dining, hall, 303, hall, 
dining, hall, 303) and (C5306, AR2, NS, R5304, 
NS, CAR2, C5301, C5309, C5306, C5303). The 
employed algorithms are not able to recognize 
the first episode as lapping in the same direction 
but misclassified it as pacing. We hypothesize 
that the algorithms recognized the repeated sub-
sequences (dining, hall), and (hall, 303) in the 
first episode. However, they did not realize that 
these subsequences need to occur continuously 
in order to constitute a pacing pattern. Therefore, 
they misclassified it as pacing. In the second 
example, the algorithms misclassified the ran-
dom episode as lapping. Obviously, the second 
episode cannot be classified as lapping because 
there is no loop in the episode. 

To rectify the first two shortcomings, we need to 
have an adaptive algorithm that is able to separate 
the individual sub-patterns, classify these sub-
patterns accordingly and then aggregate them to-
gether so as to make the correct conclusion. 

Third, the algorithms do not incorporate con-
textual information (e.g. layout of the monitored 
area) to reason about the efficiency of travel epi-
sodes. The three experiments showed that this 
occurred in 35.3%, 15.8% and 44.0% respec-
tively. An example episode related to the short-
coming 3 is (R5304, NS, CAR2, C5309, AR2, 
C5303). The employed algorithms classify it as 

Figure 2. Pruned tree created by C4.5 algorithm
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Figure 3. Features F1-F4 used in classifiers; horizontal axes represent the travel episode 
with labelled patterns; vertical axes denote: F1: raw entropy value, F2-F4: log (value of the 
amplitude +1) of each feature (log scales are used for easy visualization)



2014 Vol. 12, No 3137

W a n d e r i n g  p a t t e r n s  i n  d e m e n t i a

direct, which is not correct because it is indeed 
possible to reach the destination corridor C5303 
from the room R5304 without going through lo-
cations NS and C5309. Therefore, it is an ineffi-
cient episode and should be classified as random. 

There are two approaches to detect such inef-
ficiency. The first and direct approach is to base 
on the layout of the monitored area. If the layout 
shows there is a direct or more efficient path be-
tween C5303 and R5304, we can apply shortest 
path algorithms to find the direct path and make 
the conclusion. 

The second approach is applied when there is 
no layout or map available. In this case, we can 
base on the historical movements of the subjects 
to reason if there is a direct path between C5303 
and R5304 or any other more efficient path, for 
instance (R5304, CAR2, AR2, C5303). This solu-
tion requires retrieving and searching previous 
episodes to detect such direct or more efficient 
paths. In this paper, we use the second approach 
to reason about this case because there is no lay-
out available for the subjects monitored in the 
dementia care centre in Korea. Nonetheless, the 
second approach does not work for all the cases 
especially when there is no historical movement 
of the path needed to be searched or retrieved.
 
DeTerminisTic preDefineD Tree-BaseD algoriThm
Algorithm’s design
The goal of algorithm’s design is to rectify the 
above shortcomings so as to improve the perfor-
mance of decision trees algorithm. 

Single- and multi-pattern episodes
There are two cases: single-pattern episodes 
and multi-pattern episodes. A single-pattern epi-
sode has only one pattern from start location to 
end location. For example, episodes L1L2L3L4or 
L1L2L3L4L3L2 are single-pattern because there is 
only one pattern appearing in the entire episode 
(direct for L1L2L3L4and lapping for L1L2L3L4L3L2). 
An episode such as L1L2L3L4L3L2L3L2 is multi-
pattern because there are two patterns, lapping 
(L2L3L4L3L2) and pacing (L3L2L3L2) in the episode.

Since there is only one concluding pattern (di-
rect, pacing, lapping, or random) in single-pat-
tern episodes, we propose to design a sequential 
algorithm to do the classification. Technically, 
we assume that the sequential algorithm con-
sists of four individual modules. Each module 
is responsible for classifying one type of pattern. 
By sequentially applying these modules, we are 
then able to classify single-pattern episode into 
the corresponding concluding pattern. 

We consider each multi-pattern episode as a 
concatenation of single-pattern episodes. We 
can therefore apply the deterministic algorithm 
to classify the individual single-patterns or sub-
patterns within a multi-pattern episode and ag-
gregate these sub-patterns together to result in 
the concluding pattern.

To accomplish the proposed deterministic algo-
rithm, there are three components needed to be 
addressed. First, we need to design modules or 
algorithms to check for direct, pacing, lapping, 
and random patterns. Second, we need to deter-
mine the sequence or the order of applying these 
modules to classify both single-pattern and mul-
ti-pattern episodes. Third, we have to propose an 
aggregation scheme for classifying multi-pattern 
episodes. 

The objectives of the first and third components 
(individual modules and aggregation scheme) 
are quite clear and the details will be explained 
in next sections. 

In this paragraph, we illustrate why it is impor-
tant to address the second component. If we 
imagine each module to check for each type of 
travel patterns is a leave in a tree, then determin-
ing the sequence of applying checking modules 
is indeed analogous to determining the pruned 
tree in the decision trees algorithm. Different 
sequences might then produce different clas-
sification results and have different impacts. To 
illustrate this, we use episode L1L2L3L4L3L2L3L2, 

Figure 4. Transitional state diagram; (a) Complete 
version; (b) Demonstrating the transformation of 
travel patterns
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which could be classified as direct (L1L2L3L4) and 
pacing (L3L2L3L2), or lapping (L2L3L4L3L2) and 
pacing (L3L2L3L2). If the sequence of applying 
checking modules is lapping first followed by 
direct and pacing, we will get two sub-patterns 
direct and pacing, which is incorrect because 
they do not recognize that this is a composite ep-
isode with common locations L3 and L2. In other 
words, they do not rectify the first shortcoming. 
However, if the sequence of checking is direct 
first followed by lapping and pacing, it will yield 
correct results (lapping and pacing) and rectify 
the first shortcoming. 

Theoretically, one can try all the enumerations of 
possible sequences but it is inefficient. We pro-
pose an effective approach to reason and iden-
tify the correct sequence of applying the check-
ing modules. In the subsequent section, we first 
present the transformations of travel patterns. It 
describes how travel patterns evolve over time 
and space. Next we identify the sequence of ap-
plying checking modules. After that, we present 
the sequential algorithm in which the first and 
third components are detailed. 

Transformations of travel patterns
There are four types of patterns or states. We have 
established the complete directed cyclic graph 
with four states (16 edges) to represent how pat-
terns transform from one type to another type. The 
complete transitional state diagram has all 16 edg-
es numbered (Figure 4a). The criteria to prune out 
edges which are impossible to exist are as follows. 

A travel episode begins from a single start loca-
tion. If the subject remains at the start location, it 
is a direct pattern itself. As the subject moves to 
new locations, the travel pattern could remain as 
direct or change to inefficient patterns. This ex-
plains why the edges 1, 2, 3, and 4 are retained. 
However, inefficient patterns cannot change 
back to direct pattern because they contain re-
peated locations, directions, or diversion. Hence, 
an episode always starts as direct and can evolve 
to inefficient travel but not the other way round. 
Therefore, the edges 7, 12, and 14 are removed.

By definition, pacing is a repeated path back and 
forth between two locations whereas lapping 
is a repeated circular path 
involving at least three lo-
cations. Thus, at least two 
consecutive locations must 
be repeated at least twice 
in order to constitute a pac-
ing and/or lapping pattern. 
A path containing a sub-
path of two consecutive 
locations that is repeated 

twice is already a random pattern (regardless of 
whether or not there is any sub-path or location 
between the repeated sub-paths). Such a path 
would remain as random or transit into pacing or 
lapping. Therefore, an inefficient pattern must be 
in the random state before it evolves into pacing 
or lapping. Due to this, we conclude that direct 
state cannot change directly to pacing and lap-
ping states. In addition, pacing and lapping pat-
terns are subsets of random patterns. Hence, the 
edges 3, 4, 10, 15 are pruned out. And the edges 
2, 5 are retained.

Subsequently, we explain why the edges 9, 11, 
13, and 16 are retained. By definition, pacing and 
lapping contain repeated continuous paths be-
tween two or more locations. In a lapping/pac-
ing episode, if such paths are repeated the pat-
tern is unchanged. This explains why the edges 9 
and 13 are retained. 

If a new path is visited during the episode, a new 
pattern, not necessary pacing or lapping, may be 
formed. In such cases, it would constitute a mul-
ti-pattern episode. If the new pattern is lapping 
or pacing, there is a partial partnership between 
the old lapping/pacing pattern with the new lap-
ping/pacing pattern. 

The partnership is illustrated using two exam-
ples: L1L2L1L2L3L4L1L2L3L4 and L1L2L3L4L3L2L3L2. 
For the former, the sub-path L1L2 is part of a 
pacing pattern (L1L2L1L2) and a lapping pattern 
(L1L2L3L4L1L2L3L4). This showcases how a pac-
ing state can partially transform to a lapping 
state. For the latter, the sub-path L3L2 is part of 
a pacing pattern (L3L2L3L2) and a lapping pattern 
(L2L3L4L3L2). In this example, a lapping state par-
tially transforms to a pacing state.

The partnership also occurs between the old lap-
ping (pacing) pattern and the new lapping (pacing) 
pattern. Examples are L1L2L3L1L2L3 L1L2L3L1L2L3L4 
L2L3L4L2L3L4  or L1L2L1L2L1L2L3L2L3L2L3. Hence, 
the edges 11 and 16 are retained.

We then obtain the pruned state diagram (Fig-
ure 4b). The state diagram depicts the transfor-
mations from efficient to inefficient travels in an 
ambulation episode as the wandering subject 

Table 7. Six steps in state transformations of the ambulation episode L1L2L3L4L3L2 

Step Movement 
sequence State Pattern explanation 

1 L1 direct Direct by definition 
2 L1L2 direct Direct by definition 
3 L1L2L3 direct Direct by definition 
4 L1L2L3L4 direct Direct by definition 
5 L1L2L3L4L3 random Random, due to the repeated location L3 
6 L1L2L3L4L3L2 lapping Lapping, due to the circular path L2L3L4L3L2. 
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moves from one location to another. The first 
movement from the start location initializes the 
state to direct. Depending on subsequent move-
ments, the state may remain direct throughout 
the entire episode or change to random, then 
possibly followed by pacing or lapping. The state 
of the ambulation episode is continually updated 
until it reaches the end location. The final state 
label (e.g. random) is the episode’s classification. 
For multi-pattern episodes, when a pattern is in 
pacing state, it either remains there or evolves to 
lapping and vice versa (Figure 4b). Table 7 illus-
trates the step-by-step process of classifying the 
path L1L2L3L4L3L2 as a lapping episode.

Algorithm’s formulation
The deterministic tree-based algorithm
From the state diagram (Figure 5b) and the exam-
ple in Table 7, we identify that we only need to 
have three checking modules for the deterministic 
algorithm. These modules are to check for direct, 
pacing, and lapping patterns respectively. If an 
episode does not belong to any of the three pat-
terns, it should be random. Based on this observa-
tion and the pruned state diagram, we formulate 
the sequence of applying checking modules as 
follows. The algorithm will first check if the epi-
sode is direct. If not, it is an inefficient travel pat-
tern and the algorithm will check if the episode 
is pacing or lapping respectively. The ambulation 
episode is concluded as random if it is neither 
pacing nor lapping. In fact, this sequence is highly 
similar to the pruned tree (Figure 2), where direct 
pattern is examined in the zero level, followed by 
pacing and lapping in the second level, then ran-
dom in the third level. In other words, the state 
diagram is agreeable with the empirical result 
produced by decision trees algorithm. Due to this 
result, we name the proposed algorithm as the 
deterministic tree-based algorithm.
 
A multi-pattern episode is considered as a con-
catenation of single-pattern episodes. To classify 
multi-pattern episodes, we also start by checking 
if the entire episode is direct. If not, we check 
for single-pattern episodes that are pacing. This 
is done by checking for the longest repeated 
pacing paths, e.g. ‘L1L2L1L2’ or ‘L1L2L1L2L1L2’. Then, 
we will check for single-pattern episodes which 
are lapping. This is accomplished by checking 
for the longest circular paths (in both same and 
opposite directions). We will mark all the long-
est pacing and lapping paths as checked. For the 
remaining unchecked paths in the multi-pattern 
episode, we will label them as random if there 
are repeated locations and directions in those 
unchecked paths (by definition). 

The aggregation scheme for multi-pattern epi-
sodes is designed as follows. We count the 

number of occurrence of each type of inefficient 
patterns for the entire multi-pattern episode. The 
concluding pattern is the one with the highest 
number of occurrence. If more than one inef-
ficient patterns have the highest number of oc-
currence, the conclusion is drawn based on the 
severity of inefficient patterns (random, followed 
by lapping and then pacing).

Based upon the above analysis, the sequential 
tree-based algorithm (Appendix B) is formulated. 
Generally, mapping a single-pattern episode is a 
special case of mapping a multi-pattern episode. 
Appendix B1 hence does not distinguish the two 
cases. To do the classification, the algorithm first 
checks for direct pattern. If it is indeed a direct 
pattern, then the episode is concluded as direct. 
Otherwise, it checks for pacing (line 3), lapping 
(line 4), and random (lines 5-9) patterns in the cur-
rent episode and label them accordingly. The con-
cluding pattern is identified based on the num-
ber of occurrence or the severity of wandering 
patterns. The functions isDirect(), checkPacing(), 
checkLapping() are described in Appendix B2-4. 

Algorithms to check for direct, pacing, and lapping
Check for direct and non-direct patterns. A path 
including two or fewer movements is considered 
direct. So, Appendix B2 detects a direct episode 
with more than two movements by checking if 
there is any repeated location in the episode 
(line 3) or any shorter or more efficient path that 
connects the start and end locations (lines 7-10). 
As mentioned earlier, we look for more efficient 
path from historical location sequences or epi-
sodes so as to rectify the third shortcoming.

Check for pacing patterns. Checking for pacing is 
done by looking for the repeated pacing sub-pat-
tern (Appendix B3), e.g. ‘L1L2’. The repeated sub-
patterns must be continuous. Hence, we have 
to compare Li with Li+2 and Li+1 with Li+3 (line 2). 
If Li+2Li+3is the repeated pacing sub-pattern, we 
sequentially search for all the (continuous) pac-
ing sub-patterns LiLi+1by using the pointer j (lines 
3-8). We then label these pacing sub-patterns 
and update the search pointer i. Li+1can be part 
of another pacing pattern, hence, we subtract 2 
steps from the pointer j. 

Check for lapping patterns. By definition, a lapping 
pattern (e.g., L1L2L3L4L1L2L3L4L1 or L1L2L3L1L3L2L1) 
has its first location (L1) repeated. To look for a lap-
ping pattern starting from an arbitrary location, we 
first sequentially search for the repeated locations of 
the arbitrary location (line 3). Appendix B4 checks 
for circular paths in the same direction (lines 4-9), 
e.g. L1L2L3L4L1L2L3L4L1 and those in opposite direc-
tions (lines 17-23), e.g. L1L2L3L1L3L2L1.We use these 
example episodes to explain the algorithm. 
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For lapping in the same direction, once the 
repeated location (L1) is found (line 3), the 
pointers i and j respectively index the first 
and fifth locations of the location sequence 
L1L2L3L4L1L2L3L4L1. The repeated path (the 
second sub-sequence L1L2L3L4L1 in the lap-
ping pattern L1L2L3L4L1L2L3L4L1)is detected by 
using a step pointer k, which moves through 
the location sequence to sequentially check 
for repeated locations (line 6). If there is 
any location mismatch, it will immediately 
terminate the while loop (line 7). The value 
of pointer k therefore indicates the length of 
the repeated path found. In line 10, we make 
use of this length to determine that the re-
peated paths are continuous (to avoid cases 
such as two repeated paths L1L2L3L4L1 are 
separated by another sub-pattern of different 
types, e.g. random). The condition () in line 10 
is flexible enough to recognize lapping episodes 
such as L1L2L3L4L1L2L3L4 (when the first location 
is not revisited at last) or L1L2L3L4L1L5L1L2L3L4L1 
(when a single random location L5 is visited dur-
ing travel). Line 11 checks if the sub-paths found 
satisfy the condition of lapping (i.e. they contain 
at least three distinct locations). The variable 
tempEnd1 is used to mark the latest location in 
the episode that has been labeled as lapping. 
This is to avoid repeated labeling. 

In cases of lapping in opposite directions (e.g. 
L1L2L3L1L3L2L1), the length of the location se-
quence is always an odd number. We use this 
characteristic to quickly examine if a pattern 
is a lapping in opposite direction (line 17). We 
indeed execute the checking for opposite paths 
(e.g. L1L2L3 and L3L2L1) similarly to what we do for 
detecting lapping in the same directions. Howev-
er, we search for repeated locations in a reverse 
direction (line 20). We also use the condition in 
line 24 to check if the opposite sub-paths are 
continuous. Finally, we check if the sub-paths 
found satisfy the conditions for lapping (line 25) 
and use the variable tempEnd2 to keep track of 
the latest location that is labeled as lapping. 

The function isLapping checks whether or not 
the sub-path contains at least three distinct lo-
cations by subtracting the length of the location 
sequence by the number of unique elements or 
locations in the sequence (Appendix B5).

From the analysis of Appendix B2-5, we can see 
that the complexity of Appendix B1 is Θ (n2).

Experiment and results
To have a fair comparison with other algorithms, 
we have applied the deterministic tree-based 
algorithm on the same test data of the 10-fold 
cross validation used in the machine learning ap-
proach. The sensitivity, specificity, precision, re-
call, F1-measure, and latency are 98.2%, 98.1%, 
98.2%, 98.2%, 98.2%, and 0.0003s respectively. 
Results show that the deterministic algorithm im-
proves both the classification recall and latency. 
In particular, the classification recall improves 
by 5.9% to 98.2% compared to the best result 
produced by RF. And the latency is reduced re-
markably to 0.0003s (100 times better than RF). 
The deterministic algorithm and the machine 
learning approach are compared using the Mc-
Nemar’s test27 to examine if their differences in 
recall or accuracy are statistically significant (Ta-
ble 8). Differences in classification accuracy of 
the deterministic algorithm and other eight clas-
sifiers are significant (p<0.01).

Four misclassified episodes produced by the de-
terministic algorithm are due to shortcoming 2. 
The algorithm is not adaptive enough to recognize 
random patterns such as (CAR2, C5301, AR1, AR2) 
or (R5304, NS, CAR2, C5309, AR2, C5303). By us-
ing location context, it is possible to deduce that 
the corridors (CAR2, C5303) and the rooms (AR2, 
C5303) are near to one another. Therefore, such 
episodes are inefficient travel, not direct travel.
 

Table 8. Statistical comparison of the deterministic 
algorithm and the machine learning approach, using 
McNemar's test; confidence limit is set at 0.01 

Classifier 
McNemar’s value 

p 

NB 26.21 <0.00001 
MLP 17.93 0.0002 
C4.5 13.07 0.0003 
RF 8.64 0.0033 
BAG 10.56 0.0012 
LB 13.07 0.0003 
k-NN 19.05 0.0001 
SVM 16.41 0.0005 

 

Table 9. Performance of machine learning approach and 
deterministic algorithm in classifying direct versus indirect travel; 
NB= Naïve Bayes.; MLP= Multilayer Perceptron; C4.5= Pruned 
decision trees; RF= Random Forests; BAG=Bagging; 
LB=Logiboost ; k-NN=k-Nearest Neighbor; SVM=Support Vector 
Machine 
Classifier Sensitivity Specificity Precision Latency  
Machine learning     
 NB 84.5 79.6 87.3 0.01 
 MLP 92.7 93.8 93.2 0.17 
 C4.5 97.3 96.9 97.3 0.01 
 RF 98.2 97.8 98.2 0.01 
 BAG 97.3 97.2 97.3 0.04 
 LB 97.7 97.5 97.7 0.06 
 k-NN 93.6 91.7 94.1 0.01 
 SVM 95.5 95.5 95.5 0.02 
Deterministic 
algorithm 

98.6 98.2 98.7 0.0003 
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Additionally, we compare the capability of both 
the machine learning approach and the deter-
ministic tree-based algorithm in the binary clas-
sification of direct versus indirect patterns. After 
all, pacing and lapping patterns are subsets of 
random patterns with different degrees of ran-
domness or wandering. A simple direct/indirect 
classification is useful for providing healthcare 
practitioners a clear and quick assessment of the 
severity of a subject’s wandering behavior. 

The binary classification performances are im-
proved for both approaches (Table 9). For the 
machine learning algorithms, the sensitivity val-
ues of eight classifiers are improved from 5.6% to 
7.8%. Meanwhile, the deterministic algorithm’s 
sensitivity is increased by 0.4% only. None-
theless, the deterministic algorithm produces 
the highest sensitivity (98.6%) and specificity 
(98.2%) with shortest latency. For machine learn-
ing approaches, the RF classifier yields the best 
classification results, which are 98.2% sensitivity, 
97.8% specificity, and 0.01s latency. Neverthe-
less, the difference in performance between the 
two classifiers is not significant. 

conclusions
In this study, we propose two automated ap-
proaches for classifying travel patterns of PWD.

In the machine learning approach, eight differ-
ent classifiers NB, MLP, LB, C4.5, RF, BAG, k-NN, 
and SVM are employed. The methodology is 
evaluated on movement data produced by RFID 
tags placed on the subjects’ body. The subjects 
in this study are five PWD who have similar age 
distribution and suffer from wandering. The 
travel patterns including wandering are manually 
labelled so as to have a ground truth of classifi-
cation. The results are expressed in terms of sen-
sitivity, specificity, precision, recall, F1-measure 
and latency. The sensitivity, specificity, precision, 
recall, F1-measure, and latency of the RF clas-
sification algorithm were 92.3%, 92.3%, 92.2%, 
92.3%, 92.2%, 0.03s respectively. 

In the deterministic approach, we also introduce 
a predefined tree-based algorithm that improves 
the classification accuracy by 5.9% to 98.2% 
and significantly reduces the classification la-
tency to 0.0003s. The deterministic algorithm 
offers several advantages: (i) it is not based on 
thresholds, (ii) it is based on an operationalized 
(clearly distinguishable and measurable through 
empirical observations) definition of wandering, 
(iii) the classification process is formed from a 
logically deduced state diagram depicting trans-
formations of travel patterns which is agreeable 
with the empirical results achieved by classical 
machine learning algorithms, and (iv) the clas-

sification latency is very small, which enables 
the algorithm to be deployed in real-time and 
mobile applications aiming to detect wandering 
behavior of PWD as soon as it takes place. 

However, our present study has several limita-
tions: (a) it was tested on datasets of five PWD, 
(b) the movement data are confined by physical 
rooms and indoor settings. In reality, a subject can 
wander within a large area such as a function hall 
or wander outside the care environments, and (c) 
the algorithm has some shortcomings in the rec-
ognition of travel patterns with complicated and 
varied geometrical forms. Contextual information 
and geographical information such as the map, 
layout or design of the monitored area can be 
incorporated to refine the classification algorithm. 

In the future, we have plans to evaluate and 
validate the proposed algorithms with additional 
data samples. We will recruit volunteers to act as 
wanderers so as to collect extra data for our study. 
Though the data are not of actual PWD, it is prob-
ably the second best we can have in the near fu-
ture. Actual wandering data from PWD is the best 
and clinically significant data for our study. How-
ever, we currently lack the resources and opportu-
nity to collect this source of data. In addition, we 
would also test the applicability of the proposed 
deterministic algorithm with finer location data 
resolution (e.g. 3-D space coordinates).

In order for the proposed logic to work well with 
finer location data, we suggest to cluster nearby 
data points (coordinates) together and partition 
the coordinates location sequences (or trajec-
tories) into sequences of coarse characteristic 
locations (e.g. areas of 2mx2m). Such tasks can 
be done by applying the minimum description 
length principle and density-based spatial clus-
tering of line segments. Then we can apply the 
proposed logic in the deterministic algorithm to 
do the classification. We hope to achieve classi-
fication results as good as those reported in this 
pilot study. Additionally, we would like to scale 
up the deterministic algorithm as the sample 
size increases by exploring relevant data mining 
methods geared specifically towards recognizing 
sequences whose length is not pre-fixed and that 
have sub-patterns embedded within them such as 
hidden Markov models or probabilistic suffix tress.
 
To sum up, wandering is a common behavior 
in PWD. In clinical and long-term care settings, 
wandering is traditionally detected by having hu-
man observers to observe PWD and document 
the wandering patterns including pacing, lapping, 
and random. Such observational method requires 
labor and time, and lacks objectivity due to the 
unpredictable nature of the behavior and due to 
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appenDix a.
Movement records of subjects A to E17; location and time data recorded by the monitoring system16 are 
presented in the vertical and horizontal axis respectively
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APPENDIX B. 
Deterministic tree-based algorithms for classifying travel patterns 

 
B1. Classification of Wandering Patterns 
Inputs:  
- 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … ,𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 ∈ Ν): sequence of previously visited locations;   
Output:  
- pattern type (“direct”, “random”, “lapping”, or “pacing”) of ambulation 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 
1. if (isDirect(𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛)) label “direct” for the episode containing 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛; 
2. else 
3. checkPacing(𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … ,𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛) and label “pacing” for corresponding sub-patterns; 
4. checkLapping(𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛) and label “lapping” for corresponding sub-patterns; 
5. for each remaining unlabeled sub-sequence 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖, … , 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖)(1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑛𝑛𝑛𝑛) 
6. if (isDirect(𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 , … , 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖)) label “direct” for 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 
7. else label “random” for 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 
8. endif 
9. endfor 
10. Ra, La, Pa = the number of sub-patterns labeled as “random”, “lapping”, and “pacing” respectively; 
11. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚, 𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚,𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚); 
12. if (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚) label “random” for the episode containing 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛; 
13. else if (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚) label “lapping” for the episode containing 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛; 
14. else label “pacing” for the episode containing 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛;  
15. endif 
16. endif 
 
 
B2. isDirect(𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛) : check if a travel pattern is of “direct” type 
Inputs:  
- 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … ,𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 ∈ Ν, n > 3): sequence of previously visited locations;   
Output: 
-true or false: whether the pattern is “direct” 
1. for 𝑖𝑖𝑖𝑖 = 1:𝑛𝑛𝑛𝑛-1 
2. for 𝑗𝑗𝑗𝑗 = 𝑖𝑖𝑖𝑖 + 1:𝑛𝑛𝑛𝑛 
3. if (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 == 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 )returnfalse; 
4. endif 
5. endfor 
6. endfor 
7. search for paths containing 𝐿𝐿𝐿𝐿1 and  𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 from previous location sequences 
8. if there is any more efficient path connecting 𝐿𝐿𝐿𝐿1 and  𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 than the current path (𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … ,𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛) 
9. return false; 
10. endif 
11. return true;  
 
 
B3. checkPacing(𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛) : search and label “pacing” if exist. 
Inputs:  
- 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … ,𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 ∈ Ν): sequence of previously visited locations;   
Output:  
- label “pacing” for “pacing” patterns 
1. for 𝑖𝑖𝑖𝑖 = 1:𝑛𝑛𝑛𝑛 − 3 
2. if(𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 == 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+2&&𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+1 == 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+3) 
3. 𝑗𝑗𝑗𝑗 = 𝑖𝑖𝑖𝑖 + 4; 
4. while(𝑗𝑗𝑗𝑗 ≤ 𝑛𝑛𝑛𝑛 − 1) 
5. if�𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 == 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 &&𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+1 ==  𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+1�𝑗𝑗𝑗𝑗 += 2; 
6. elsebreak; 
7. endif 
8. endwhile 
9. label “pacing” for 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 …𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖−1; 
10. i = j – 2; 
11. endif 
12. endfor 
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B4. checkLapping(𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … , 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛): search and label “lapping” if exist.  
Inputs:  
- 𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2, … ,𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 ∈ Ν): sequence of previously visited locations;   
- 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: an empty stack data structure; 
- 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡1 =  −1; 
- 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡2 =  −1; 
Output:  
- label “lapping” for “lapping” patterns 
1. for 𝑖𝑖𝑖𝑖 = 1:𝑛𝑛𝑛𝑛-1 
2. for𝑗𝑗𝑗𝑗 = 𝑖𝑖𝑖𝑖 + 1:𝑛𝑛𝑛𝑛 
3. if (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 == 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖)  
4. 𝑠𝑠𝑠𝑠 = 0; 
5. while(𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠 ≤ 𝑗𝑗𝑗𝑗 && 𝑗𝑗𝑗𝑗 + 𝑠𝑠𝑠𝑠 ≤ 𝑛𝑛𝑛𝑛) 
6. if(𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘 == 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘)𝑠𝑠𝑠𝑠 += 1; 
7. elsebreak; 
8. endif 
9. endwhile 
10. if (𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠 == 𝑗𝑗𝑗𝑗 ||𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠 == 𝑗𝑗𝑗𝑗 − 1) 
11. if (𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡1 < 𝑗𝑗𝑗𝑗 + 𝑠𝑠𝑠𝑠 && 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 …𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖−1)) 
12. label “lapping” for 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 …𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘−1; 
13. 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡1 = 𝑗𝑗𝑗𝑗 + 𝑠𝑠𝑠𝑠; 
14. break; 
15. endif 
16. endif 
17. if�(𝑗𝑗𝑗𝑗 − 𝑖𝑖𝑖𝑖)%2 == 0� 
18. 𝑠𝑠𝑠𝑠 = 𝑖𝑖𝑖𝑖 + 1; 
19. while(𝑠𝑠𝑠𝑠 < (𝑖𝑖𝑖𝑖 + 𝑗𝑗𝑗𝑗) 2⁄ && 𝑠𝑠𝑠𝑠 ≤ 𝑛𝑛𝑛𝑛)  
20. if(𝐿𝐿𝐿𝐿𝑘𝑘𝑘𝑘 == 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖−𝑘𝑘𝑘𝑘+𝑖𝑖𝑖𝑖)𝑠𝑠𝑠𝑠 += 1; 
21. elsebreak; 
22. endif 
23. endwhile 
24. if (𝑠𝑠𝑠𝑠 == (𝑖𝑖𝑖𝑖 + 𝑗𝑗𝑗𝑗) 2)⁄  
25. if(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡2 < 𝑗𝑗𝑗𝑗 && 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 …𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖−1)) 
26. label “lapping” for 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 …𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘−1; 
27. 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡2 = 𝑗𝑗𝑗𝑗; 
28. break; 
29. endif 
30. endif 
31. endif 
32. endif 
33. endfor 
34. endfor 
 
 
B5. isLapping(𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 …𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖−1): check if sub-sequence 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 … 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖−1 contains at least 3 distinct locations 
Inputs:  
- 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 , … ,𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖−1(𝑛𝑛𝑛𝑛 ∈ Ν): sub-sequence to check;   
Output: 
- true or false: whether it contains at least 3 distinct locations 
1. if �𝑗𝑗𝑗𝑗 − 𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 ,𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖+1, …𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖−1� < 3�return false; 
2. return true;  


