Original

An intelligent emergency response system:
Preliminary development and testing of a
functional health monitoring system

Tony Tam MHSc
Intelligent Assistive Technology and Systems Laboratory
Department of Occupational Science and Occupational Therapy
University of Toronto, Toronto, Canada

Alf Dolan MSc PEng

Institute of Biomaterials and Biomedical Engineering
University of Toronto, Toronto, Canada

Jennifer Boger
Intelligent Assistive Technology and Systems Laboratory
Department of Occupational Science and Occupational Therapy
University of Toronto, Toronto, Canada

Alex Mihailidis PhD PEng
Intelligent Assistive Technology and Systems Laboratory
Department of Occupational Science and Occupational Therapy, and
Institute of Biomaterials and Biomedical Engineering
University of Toronto, Toronto, Canada
E: alex.mihailidis@utoronto.ca

T.Tam, A. Dolan, J. Boger, A. Mihailidis, An intelligent emergency response
system: Preliminary development and testing of a functional health monitoring
system, Gerontechnology 2005; 4(4):209-222. Changes in a person’s routine of
daily activities can signal a change in health. To support the growing elderly popu-
lation who want to age-in-place, techniques and algorithms have been developed
to build a system that monitors functional health in the home environment. This
health monitoring system has been developed with machine vision and pattern
analysis components to track the occupant, learn his/her pattern of activity, and
detect significant deviations that could indicate a change in health status. The ef-
fectiveness of the health monitoring system was investigated with a pilot study
capturing video footage of a 28-day simulation including 21 days of normal activ-
ity and seven days of abnormal scenarios. The system was effective in learning an
occupant’s pattern of activity and detecting deviations that were indicative of
changes in the occupant’s functional health status. Overall, the results indicate
that a health monitoring system could be developed that uses machine vision and
basic artificial intelligence with promising potential to support aging-in-place.
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Providing support to older adults who alone, perhaps in rural locations where
want to continue to live independently immediate assistance is not readily avail-
in their own homes is a growing social  able'?

concern, especially for those who live
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To support aging-in-place, a variety of
alarm systems have been developed to
provide a means of signalling for help
when a person is in a situation where
his/her safety is compromised. These
devices usually have a panic button and
are typically worn on the wrist or
around the neck as a necklace. The
main problem with this approach is that
as much as 27 to 40% of users do not
wear the alarm on a daily basis, which
renders the system ineffective in the
event of an emergency. Many users may
be hesitant to use the system and may
not recognise a situation where s/he is
in danger®. Additionally, users may be
unable to push the button if they have
lost consciousness or somehow become
injured. Finally, these systems can only
provide alerts for acute events such as a
fall or an injury. They cannot detect
gradual declines in overall health status,
both physical and cognitive, which
would place the independence and well-
being of an older adult at risk.

Studies have shown that a decline in an
older adult’s ability to complete activit-
ies of daily living (ADL) such as self-care
tasks, is a strong indicator of declining
health and may also indicate an in-
creased likelihood of an emergency situ-
ation occurring®. Changes in sleep pat-
terns, frequency of toilet use, and
medication use can be used as indicat-
ors of physical and mental health dis-
orders. Declines may present as a reduc-
tion in the number of ADL completed
and/or an increase in the duration of
time it takes to complete ADL*®. In re-
sponse to these and other similar find-
ings, there has started to be more re-
search and health monitoring/
emergency response systems being de-
veloped that use these types of health in-
dicators.

In order to interpret the collected data
and determine the status of the user, re-
search in this area has focussed on two

primary areas: measuring and tracking
activity levels and pattern analysis. Previ-
ous work in the area of measuring activ-
ity has included the use of force-sensit-
ive load tiles”®, touch sensors on
furniture and magnetic switches on
doors?, the use of Radio Frequency Iden-
tification (RFID) tags'®, and motion
sensors''. The use of more sophistic-
ated sensing systems, such as computer
vision, has been far more limited. The
CAREMedia group investigated the use
of machine vision in a nursing facility to
automatically assess patient progress
traditionally documented by staff obser-
vation reports of patient activity'?. In-
vestigations in pattern analysis include
Honeywell’s ILSA project, which ana-
lyzed sequential patterns of motion
sensor firings'?>, the SmartHouse pro-
ject', which considered behavioural pat-
terns based on the time interval that
events occurred, and the MavHome pro-
ject'®, which looked for deviation from
patterns with missing events, extra
events, or changes in regularity.

This paper describes preliminary work
on a computer vision-based health mon-
itoring system to support older adults
who wish to remain independent in
their own homes, while at the same
time providing a means to monitor for
signs of unusual activity that might in-
dicate a decline in health. It is thought
that computer vision is a more effective
means of measuring and tracking activ-
ity, as it can provide a much richer data
set than other typically used sensors
(e.g. motion sensors). This paper will
also present a simple pattern analysis al-
gorithm that aims to provide caregivers
with ‘scores’ of how much a person’s
pattern of activity (and thus level of
health) is changing in comparison with
normal patterns. Finally an overview will
be presented of an initial pilot study
that was conducted with the new proto-

type.
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OVERVIEW OF THE HEALTH MONITORING
SYSTEM

This health monitoring system uses
levels of mobility and activity comple-
tion as its primary measures. As previ-
ously described, these measures have
shown to be indicative of overall health
in older adults and are less obtrusive
than other indicators such as physiologic-
al measurements. Furthermore, levels of
activity can be more easily captured
using our proposed machine vision and
pattern analysis algorithms than other
measures, which in fact, may be im-
possible to collect using these tech-
niques. This system has two primary
components: machine vision and pat-
tern analysis. The machine vision com-
ponent tracks the location of an occu-
pant and creates a log entry when an
occupant is present in one of the pre-
defined areas of activity. The pattern ana-
lysis component uses these event data
to model the occupant’s activity and to
calculate a ‘score of conformance’ to pre-
viously observed patterns. The score is
based on two criteria in each activity
zone: the time of day that events have oc-
curred, and the frequency of an event.

Figure 1 illustrates the process used to
capture and analyze the data required
to determine the status of the user. The
System Interface is used to configure
the system by defining the location of
the activity zones in the environment
and setting thresholds (i.e. the accept-
able amount of deviation from normal
patterns) for notifying the caregiver. In
future prototypes, these thresholds
would be initially determined using em-
pirical data and then be automatically
adjusted by the system according to the
needs of each individual user. Image-
processing algorithms are then applied
in the Image Extraction and Image Ana-
lysis stages to track the occupant’s loca-
tion. When the occupant enters a
defined activity zone, the event informa-
tion is stored in the Event Log of the
database for subsequent analysis.

In the Health Assessment stage, probab-
ility models are developed for each of
the activity zones and are automatically
calculated and stored as Event Probabilit-
ies. Specifically, two data sets are cre-
ated using these data for each day of
the week—one that describes the fre-

: I
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Figure 1. Diagram showing the process of acquiring the image using a video camera,
identifying the object to track, and storing and analysing data for adverse events'®
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guency with which events typically occur
in a particular zone over the course of
the day (Frequency Probability) and one
that describes the time of day different
events typically occur (Presence Probabil-
ity). Taken together, these two meas-
ures may be able to characterize an occu-
pant’s conformance to his/her normal
pattern of activity. Normal user perform-
ance would be determined by a training
set of data that would be automatically
collected for each individual user at
system start-up. The required length of
these training periods for each person is
currently unknown, however, it is expec-
ted that three weeks of data would suf-
fice. Every 24 hours a score of this con-
formance is calculated based on the
collected data and the person’s typical
performance of the same activities over
that time period. A caregiver can then
be notified if the user’s activity deviates
significantly from the normal pattern of
activity discovered during the system’s
training period.

MACHINE VISION

The machine vision component, includ-
ing the parameters that will be de-
scribed, is built upon the automated fall
detection system designed by Lee and Mi-
hailidis'®. A charge coupled device
(CCD) digital video camera is used to cap-
ture images from the environment. It
should be noted that while a colour
camera is used, this prototype only uses
grey-scale images during its image pro-
cessing. The colour components will be
used in future versions to improve the ro-
bustness of the system, for example by
using skin colour as an additional
marker for tracking the location of a
person. A Matrox Meteor [I™ frame grab-
ber card is used to capture individual
video frames, and the Active Matrox Ima-
ging Library (ActiveMIL) software is used
for image processing. To identify and
track the occupant, the machine vision
component uses an adaptive back-
ground subtraction algorithm (BGS) to

separate the background (extraneous en-
vironment) from the foreground (region
or object of interest), similar to the
Pfinder algorithm'’. Image segmenta-
tion is achieved by comparing the grey-
scale value of each pixel in the initial
image of the environment with the cur-
rent image. Differences between pixel
greyscale values that are above a set
threshold are identified as part of the
object of interest and extracted. The res-
ulting extracted image is then pro-
cessed using a connective-component la-
belling technique'® with the end product
being a ‘blob’ or silhouette of the occu-
pant. Figure 2 shows how the applica-
tion of successive algorithms is applied.
The greyscale pixel values (ranging
from a value of 0 to 255) of the cap-
tured image (B) are subtracted from
pixels of the background image (A).
Pixels exceeding the threshold are re-
placed by white pixels, resulting in
image (C). A threshold value difference
of 60 pixels was found to be optimal for
the common fluorescent lighting condi-
tions under which the current system
was tested. The connected-component-
labelling algorithm is also applied in (C)
to group pixels adjacent to each other.
A low-pass filter is applied to remove
Gaussian noise, and also remove blobs
with areas less than a minimum blob
size to produce the image (D). The min-
imum blob size used was 300 pixels,
which was determined empirically using
subjects of various heights and sizes
during prototype development.

The co-ordinates of the geometrical
centre of this blob are calculated and
tracked as the occupant moves
throughout the environment. During
system initialization, the System Inter-
face is used to define regions in the cam-
eras field of view as activity zones, such
as the bed and the toilet. Figure 3
shows a snapshot of a System Interface
with activity zones defined.
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C D

Figure 2. Application of background
subtraction, connected component
labelling, and filters to captured video
frames; A: Original background image,
B: Captured image with the occupant,
C: Application of background
substraction, D: Application of low-pass
Gaussian noise filter, and blob-area
filters

When an occupant enters a zone, corres-
ponding events are logged to a Mi-
crosoft Access™ database, as described
in detail in the section ‘Pattern Model-
ling and Analysis’. For this prototype,
events that occurred with duration of
one second or less were ignored as it
was assumed that the person was just
walking through the zone. If the occu-
pant is detected in another activity zone
outside of the currently active activity
zone, the previous event information is
logged to the database, and the timer
and event information is reset for the
current event.

Pattern modelling and analysis

Two sets of probabilities are calculated
by processing the event information cap-
tured by the machine vision component
and stored in the database: the probabil-
ity of the person entering a specific
zone a certain number of times on a
given day of the week (frequency prob-
ability), and the probabilities that a
person is present in a specific zone, at a

frowse postion () 820,505 1

Number of Inactivity 3
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Defaul_Activity_Zone
iatsl tat

lab. bt
newroanm. bt
Toofn it
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New Set of Zones ———

i New Room |
|
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Figure 3. System Interface showing the digital camera’s field of view and defined

activity zones
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specific time interval of the day, on a
given day of the week (presence probabil-
ity).

The frequency probability is currently cal-
culated every 24 hours. This interval can
be modified as is appropriate. The Fre-
quency Probability (FP) is calculated
using the following data: Zone Number,
Day of the Week, Events in Zone, and
Number of Cases. The Zone Number is
the number assigned by the machine
vision component for a defined activity
zone, the Day of the Week has a numer-
ic value from Sunday(0) through Sat-
urday(6), and the Events in Zone is a
count of how many times the person
entered a specific zone over a 24-hour in-
terval. Number of Cases represents the
number of times the Events in Zone
value has occurred for the same day of
the week for a specific zone. To calcu-
late the Frequency Probability, the
system first calculates the sum of all the
Number of Cases values for a specific
day of the week. This sum represents
the total number of times the system
has observation data for this zone on
this day to give the Total Number of
Cases. The Number of Cases for each
zone for the same day of the week are
then divided by the Total Number of
Cases to give the Frequency Probability
(FP), as shown in Equation 1:

Fp = Number of Cases ™)

Total Number of Cases

The Presence Probability (PP) is calcu-
lated from the following data: Zone
Number, Day of the Week, Number of
Cases, and Time Interval. Zone Number,
Day of the Week, and Number of Cases
correspond to the same values used to
calculate FP, as described above. Time In-
terval currently has a value of 0 to 23
representing each hour interval in the
day, however, this interval can be modi-
fied as needed. The Presence Probability
is calculated by dividing the number of

times the occupant has been present in
a particular zone on a specific day of
the week during the same Time Interval
by the Number of Cases (representing
the number of times this time interval
on this day of the week has been recor-
ded). The following is performed every
time an event is recorded . The data are
queried for the Number of Cases for the
corresponding Zone Number and day of
the week for the event. The Presence
Probability (PP,) is calculated using Equa-
tion 2:

_ [(PPs; * Number of Cases)

Number of Cases + 1

PP, 1

The current Presence Probability (PP,) is
calculated by multiplying the previous
Presence Probability (PP,;) by the
Number of Cases (giving the total recor-
ded number of events in this zone and
on day of the week until today), plus
one (for the current event in this zone).
This is divided by all of the days the
system has recorded (whether the occu-
pant was in the zone or not) including
the current day. The presence probabil-
ity is also updated for each of the sub-
sequent time intervals that span the
event duration.

The activity zone score represents the
likelihood of both the presence and fre-
quency patterns occurring together over
the observed 24-hour period and is cal-
culated by Equation 3:

P(A N B) = P(A) * P(B) (3)

P(A) is the product of the Presence Prob-
abilities of all the time intervals (to, ti,
..., ty) for the zone of interest on a spe-
cific day of the week. This calculation
can be represented by Equation 4:

P(A) = P(toNt; N...Nty,) = 4)

PPy * PP, * ... * PP,

P(B) is the Frequency Probability value
for the zone of interest on the same day
of the week; namely P(B) = FP. It should
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be noted that at this stage of work Equa-
tion 3 assumes that events A and B are
mutually exclusive, which may not be
valid at all times. However, it is felt that
this assumption is valid at this time in
order to begin to explore one potential
method for looking at conformance in
activity levels. Future work will focus on
a more valid calculation.

The current model does not take into ac-
count standard deviation in the collec-
ted data. For this prototype acceptable
variability in data is dealt with through
an interpolation calculation performed
on the data. Specifically, the Piecewise
Cubic Hermite Interpolating Polynomial
(PCHIP) interpolation MatLab function'®
is used to estimate new probabilities.

This interpolation only occurs on ini-
tially calculated probabilities that are
below 50 percent (an arbitrary threshold
used for this initial investigation). This
is necessary as there are cases, espe-
cially during the initial training period of
the system, where the calculated probab-
ilities are very low because an unob-
served ‘normal’ event has occurred. For
example, if an occupant always sleeps
in the 23:00-23:59 time interval, but on
one occasion sleeps at 22:58, the
system has not observed a bed event in
the 22:00-22:59 time interval previously
and will report a low probability. It is
planned to include standard deviation in
addition to the interpolation in the next
version of the system.

Table 1. Normal and Abnormal Activity for Sample Calculation of Day 3 (Wednesday);
The abnormal activity consists of an increased frequency of toileting throughout the

day
Normal Activity Abnormal Activity
Start | Activity Activity Start | Activity Activity
Time| Zone Duration (hours) Time| Zone Duration (hours)
0:00 Bed Sleeping (7:05) 0:00 |Bed Sleeping (7:01)
7:05 Toilet Morning grooming (0:10) 7:01 Toilet Morning grooming (0:14)
7:15 Sink (0:15) 7:15  |Sink (0:15)
7:30 Shower (0:30) 7:30 |Shower (0:30)
8:00 Closet Dress (0:15) 8:00 |Closet Dress (0:15)
Breakfast and leave home Breakfast and leave home
8:15 ABSENT (4:22) 8:15 | ABSENT (3:53)
12:37 |Toilet, Sink [Come home for lunch (0:08) |12:08 |Toilet, Sink [Come home for lunch (0:07)
12:45 |ABSENT Lunch and out of home (1:15) |12:15 |ABSENT Lunch and out of home (1:45)
14:00 |Bed Afternoon nap (1:02) 14:00 |Bed Afternoon nap (1:20)
15:20 |Chair Watch TV (0:25)
15:02 |Toilet, Sink |(0:13) 15:45 |Toilet Abnormal #1 (0:20)
15:15 |Chair Watch TV (2:05) 16:05 |Chair Watch TV (1:07)
17:20 |Toilet, Sink |Prepare for dinner (0:15) 17:12 |Toilet, Sink |Prepare for dinner (0:03)
17:35 |ABSENT Prepare and eat dinner (2:25) |17:15 |ABSENT Prepare and eat dinner (2:45)
20:00 |Chair Watch TV (2:17) 20:00 |Chair Watch TV (0:30)
20:30 |Toilet, Sink |Abnormal #2 (0:15)
20:45 | Chair Watch TV (0:45)
21:15 |Toilet, Sink [Abnormal #3 (0:30)
21:45 |Chair Watch TV (0:21)
22:17 |Toilet, Sink |Prepare for sleep (0:13) 22:06 |Toilet, Sink |Prepare for sleep (0:24)
22:30 |Closet Change (0:10) 22:30 |Closet Change (0:10)
22:40 |Bed Sleep (7:00) 22:40 |Bed Sleep (0:21)
23:01 |Toilet, Sink |Abnormal #4 (0:14)
23:15 |Bed Sleep (7:00)
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Table 2. Presence Table for Sample The following examples illustrate how
Calculation; Zone name = Toilet; Zone the scoring is used to indicate conform-
number = 4, Day of the Week = 3 ance or deviation from an occupant’s
Time Interval Presence Probability normal pattern of activity. Table 1
o 0 shows a sample of a normal and an ab-
1 0 normal activity day. Assume the Pattern
2 0 Analysis component has included the
3 0 events of the day and updated the pres-
4 0 ence and frequency tables for the Toilet
5 0 activity zone for this day of the week as
Z 6 0.5 shown in Tables 2 and 3, respectively.
z 7 0.95
< 8 0 On the normal day, the occupant
S J 0 entered the toilet zone during the follow-
~ :? 8 ing times: 7:05, 12:37, 15:02, 17:20,
s 12 : and 22:17. The corresponding time in-
N 13 0 tervals and probabilities (shown in brack-
= 14 0 ets) taken from the presence table are
5 15 0.8 the following: 7:00 (0.95), 12:00 (1.0),
= 16 0.43 15:00 (0.8), 17:00 (1.0), and 22:00
17 1.0 (1.0). The 1.0 value (100%) at 12:00 and
18 0 17:00 indicates that the occupant has
216 19 0 been observed in the toilet activity zone
—_— 20 0.25 in those time intervals every Wednesday
21 0.25 in the previously observed history. The
;; 0]25 product of the presence probability P(A)
’ for the toilet activity zones is calculated
from Equation 4 as follows:
et Table 3. Frequency Table for Sample PAA)=Pt; Nt Ntz N ... Nty
- Calculation; Zone name = Toilet; Zone = P(ty) * P(ty) * P(t3) * ... * P(t,)
< number = 4, Day of the Week = 3 = P(7:00) * P(12:00) * P(15:00) *
E Number Number Frequency 5(107';)50))* (F;(%?O?& 8)* (1.0) * (1.0)
o of Events of Cases Probability _ O..76 ’ ’ ’ '
° 0 0 0 £ 0
= 1 0 0 rom Table 3, the Frequengy Probabl!lty
o 2 0 0 of five events occurring in the toilet
§ 3 0 0 activity zone on a Wednesday is 0.75.
3 4 0 0 The Activity Zone Score for the toilet
5 3 0.75 activity zone is calculated from Equation
6 0 0 3 as follows:
7 0 0
3 0 0 P(A N B) = P(A) * P(B)
9 1 0.25 =0.76 * 0.75
10 0 0 =0.57
1 0 0 From the data captured during the pilot
:5 8 8 study, significant deviations from an oc-
14 0 0 cupant’s normal pattern of activity were
15 0 0 shown to drop the activity zone score
below 0.10, namely activity zone scores
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below this threshold would be a cause
for concern. Therefore, in this study the
0.57 score is well above 0.10 and the oc-
cupant’s patterns of activity in the toilet
zone are considered to be ‘normal’.

On the day of abnormal activity, the occu-
pant entered the toilet zone at the follow-

ing times: 7:01, 12:08, 15:45, 16:35,
17:12, 20:30, 21:15, 22:06, and 23:01.
The corresponding time intervals and
probabilities (shown in brackets) taken
from the presence table are the follow-
ing: 7:00 (0.95), 12:00 (1.0), 15:00
(0.8), 16:00 (0.43), 17:00 (1.0), 20:00
(0.25), 21:00 (0.25), 22:00 (1.0) and
23:00 (0.25). If an event had a duration

that stretched into subsequent time inter-

vals, each subsequent time interval’s
presence probability would also be in-
cluded in the calculation. The toilet
event at 15:45 stretched to 16:05, there-
fore it was logged in both the 15:00 and
16:00 time intervals.

The product of the presence probability
P(A) for the toilet activity zones is as fol-
lows:

PA =Pt Nt NEzN...NL)

P(ty) * P(t2) * P(t3) * ... * P(ty)
= P(7:00) * P(12:00) * P(15:00) *
P(16:00) * P(17:00) * P(20:00) *
P(21:00) * P(22:00) * P(23:00)
= (0.95) * (1.0) * (0.8) * (0.43) *
(1.0) * (0.25) * (0.25) * (1.0) * (0.25)
= 0.0051

Again, the activity zone score is calcu-
lated as the product of the presence
probabilities P(A) multiplied by the fre-
quency probability P(B). In this case P(B),
the probability of 9 events occurring in
the toilet activity zone on a Wednesday
taken from the frequency table is 0.25.
The Activity Zone Score for the toilet
activity zone is calculated as follows:

P(A N B) = P(A) * P(B)
=0.0051 * 0.25
=0.0013

The low activity zone score of 0.0013

was the result of both the low presence
probabilities and a low frequency prob-
ability. This score is well below the 0.10
threshold for concern and indicates a de-
viation from the occupant’s activity pat-
tern in the toilet activity zone.

PiLOT sTUuDY

A small pilot study was conducted to
test both the machine vision and the pat-
tern analysis components of the system.
A bedroom and bathroom were construc-
ted for simulation and the researcher,
acting as the occupant, simulated 21-
days of normal activity and seven days
of abnormal activity. For the study, the
following activity zones were monitored:
bed, closet, toilet, sink, shower, and a
chair.

Study set-up

An overhead Sony Exwave HAD SSC-DC-
393 colour video camera, with a Cosmi-
car/Pentax 3.5-8mm wide ‘fish-eye’ lens
was used to record video of the pilot
study to a VCR. Figure 4 shows the
camera view of the pilot study scene.
Video of the pilot study was used to
compare and validate the results of the
health monitoring system’s analysis.

A script containing time-specific events
was created to simulate both normal
and abnormal occupant activity. For the

w

Figure 4. Camera view of pilot study
scene. The following activity zones were
used in this study; A: Sink, B: Toilet, C:
Shower, D: Chair, E: Bed, F: Closet
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training period of normal activity, a
script representing each of the seven
days of the week was repeated three
times, with slight variations in timing to
simulate the normal variation in an occu-
pant’s activity. Simulated activities on ab-
normal days included getting out of bed
in the middle of the night and pacing,
going to the bathroom several times
throughout the night, and decreases in
general activity. Sample scripts for both
normal and abnormal activity are similar
to the data presented in Table 1. Five-
hundred events were simulated for the
pilot study (369 normal and 131 abnor-
mal events).

During the recording of the scenarios,
the duration of activity that would nor-
mally take place over an hour was com-
pressed into one minute intervals. This
enabled the activity of a 24-hour day to
be simulated in 24 minutes and allowed
the researcher to simulate 28 days of
data over the space of two days. A re-
search assistant (RA) was positioned out-
side of the camera scene. He was
equipped with the scripts, a stopwatch,
the VCR, and a computer monitor to ob-
serve the video feed. The RA was given
instructions to tell the researcher when
and where to move in the scene. Al-
though the RA was asked to use the
script as a guideline, he was also encour-
aged to vary the times to simulate the
normal variability of an occupant’s
living pattern on a typical day.

Pilot Study Results

The data obtained during the pilot study
were used to assess the efficacy of the
machine vision and the pattern analysis
components, as well as to assess limita-
tions and find opportunities for future
work.

After the video was processed and the
timestamps  translated, the events
logged by the machine vision compon-
ent were verified against the video,

which acted as the ground truth. A re-
search assistant, who was not involved
in the recoding of the trial, compared
the logged data to the video of the trial.
At this stage of work only a single rater
was used. Of the 500 simulated events,
the machine vision component accur-
ately identified 476 events (95.2%), cap-
turing 348 (94.3%) of the normal events
and 128 (97.7%) of the abnormal events.
Errors during this event included 24
false negatives (the system did not cap-
ture events that were recorded on
video), six false positives (the system
logged events that did not correspond
to the video), and four false extras (the
system recorded several consecutive
events in a zone that should have been
represented with a single event). The
Pattern Analysis component analyzed
the data captured from the machine
vision component and generated indi-
vidual activity zone scores and an over-
all score for each day.

Individual activity zone scores were aver-
aged over each week and presented
graphically in Figure 5. The first week
showed 100% conformance in each
zone. This is to be expected as the
model generated for the first week is
based on a single set of data. Weeks
two and three showed reductions in con-
formance because of normal variations

100%

Il

80%

60%

Il

— Bed
40% - = Chair
-+ Closet
20% - = Shower
-=Toilet
- Sink
Uofo T T T

Week 1 Week2 Week3 Week4
Figure 5. Graphical representation of
the pattern analysis component pilot
study results. The first three weeks
show training data, and the fourth
week shows scores from abnormal
activity (weekly averages)

Percent Conformance
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in the occupant’s activity. Week four
showed a greater decrease in conform-
ance in each activity zone, indicating sig-
nificant deviations from the occupant’s
pattern of activity.

DiscussioN

Overall, the machine vision’s high cap-
ture rate of events (95.2%) and its ability
to generate scores that distinguished
between normal and abnormal activity
in the pilot study are positive outcomes.
While the number of false positives,
false negatives, and false extras were
greater than anticipated, the machine
vision system still performed well.

Some of the capture problems can be at-
tributed to an unusual flicker of one of
the fluorescent lights in the pilot study
environment. The vision system was de-
signed to track the largest foreground
object and the occasional momentary
flicker would create a blob (from the re-
flection of the light on the shiny surface
of the floor) that was larger than the oc-
cupant, which was then tracked in error.
False extras were sometimes created
when the activity zone was too small. In
these cases, the centre of the occu-
pant’s blob appeared on the border or
just outside the defined activity zone
and was misinterpreted by the system
as the occupant leaving and re-entering
the zone. Some of the false negatives
were due to the unique properties of the
bed and the blanket. For example, when
the occupant awoke and pushed the
blanket aside, the difference in grey-
scale values between the blanket and
the bed sheet created a blob with an
area greater than the size of the occu-
pant. In real-time simulations the adapt-
ive background subtraction algorithms
would blend the non-moving bed sheet
into the background. However, the accel-
erated pace at which the trial took place
did not leave enough time.

This work has helped to identify some

of the advantages and limitations of
using machine vision in this application
as opposed to other sensing methods
such as motion sensors and environ-
mental switches. In particular, some of
the primary strengths of using com-
puter vision are that it provides a richer
data set that can be used in other applic-
ations, it requires less hardware to be
used and installed within a home, it can
be more easily adapted to changes
within the environment (e.g. change in
furniture configuration), and it can be
used for increased security features,
such as identifying users. Some of the
primary limitations include that it has
potential privacy issues, especially if
images need to be recorded and trans-
mitted (which is currently not the case
in our system), the lead time is greater
since more advanced and sophisticated
algorithms need to be developed, and,
at least at this stage of our work, it only
gives information about the completion
of activities at a gross level—i.e. not
tracking the finer details of task comple-
tion.

In the graphical representation of the
pattern analysis results (Figure 5), week
one shows 100% conformance to the oc-
cupant’s pattern of activity. This is ex-
pected, as the event data set logged
during that week is the only set of data
of the pattern analysis component that
has to generate a model. The second
and third week of the training period
show more variance as events from
week to week may have occurred in dif-
ferent time intervals (for instance, if an
event occurred at 09:59 in the first
week, and 10:02 in the second week,
the presence probability would be 50%
in both the 09:00 and 10:00 time inter-
vals for that zone on that day). Low
probabilities in the second and third
week may also be attributed to errors in
the pattern analysis models created by
incorrect machine vision event captures
(false positives, false negatives, and

No 4

Vol 4,

March 2006,

219

-
o
=
©
=
.
=]
(o]

—_

<
%
o
-
c
o
.
o
o
2
=
2




An intelligent emergency response

No 4

Vol 4,

©o
o
o
~
<
v
=
©
=

220

-
@
c
©
c
=
s
<}

=

<
v
v
-
c
o
N
v
o
2
2
=

false extras) as mentioned in the ma-
chine vision results above. With a longer
training period and a greater number of
observations (i.e. logged events), the
model would more accurately represent
the occupant’s pattern of activity and be
more robust.

The fourth week, which simulated abnor-
mal activity, showed greater deviations
from the occupant’s normal patterns of
living in the form of dramatic drops in
activity zone scores. After reviewing the
data, and analyzing the causes behind
low scores, significant deviations from
normal patterns of activity that were
noted as cause for concern were those
with activity zone scores below 0.01,
and overall scores of less than 0.0001.
Again, it should be noted that these
threshold scores were based solely on
observations and data collected during
these trials, and thus, may need to be ad-
justed during future trials. It is prob-
able that the magnitude of scores that
are identified as possible cause for con-
cern will vary depending on the regular-
ity of the individual’s normal activity
routine, his/her health needs, and pos-
sibly even specific activities. Overall, the
pattern analysis component performed
well in learning the patterns of activity
of the occupant in the trial, building
probability tables to describe his activ-
ity, and detecting significant deviations
in patterns during the abnormal activity
scenarios of the trial. However, these pre-
liminary data also show that more train-
ing data (i.e. more than 21 days) are re-
quired to build a more functional
model. A method for identifying when
enough training data has been gathered
for an individual needs to be determ-
ined through more in-depth trials.

The goal at this stage of work was to de-
termine the initial efficacy of the ma-
chine vision and pattern analysis com-
ponents developed for the health
monitoring system. With this in mind,

conditions were optimal for these trials.
For example, only one subject was in
the room throughout the study, no
other moving objects such as pets or
mobility aids were introduced, and no
furniture was moved outside of its asso-
ciated activity zone. The mock-up bed-
room/bathroom had no outside win-
dows, therefore effects of outdoor
lighting or other environmental factors
were not tested. The system must even-
tually be able to identify and track mul-
tiple moving objects, as well as being
able to automatically redefine activity
zones when items such as furniture are
moved. Incorporating colour-based
tracking is one method that could solve
many of these problems, as colour data
can be used to identify and track ob-
jects much more easily. The system was
only tested so far with one camera,
however, the system can be expanded
by implementing camera tracking al-
gorithms to switch between room camer-
as, or have machine vision systems in
each room feed data to a common data-
base for the pattern analysis component
to process.

The simulated declines in health for the
pilot study were based on estimates of
expected possible associated beha-
viours. Much work will have to be done
into areas such as identifying how spe-
cific activities are affected by changes in
health, how much variance there is
between different individuals, and if cer-
tain activities are more indicative of a
change in health and therefore more im-
portant to monitor than others. As differ-
ent health problems will likely corres-
pond to the same changes in activity
patterns (for instance, drinking more
water at the onset of diabetes), it is pos-
sible that the system could be used to
help recognise specific medical condi-
tions at an earlier stage than they may
otherwise have been detected.

Other limitations of the pilot study in-
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cluded that the simulation was scripted
and not a live clinical trial and was ex-
ecuted in an accelerated time frame.
However, at this stage of development
this type of pilot testing is needed
before performing trials with actual
users. While the occupant’s activity was
simulated in a shorter period of time in
the study, his movements were not simil-
arly accelerated - he did not move
faster. The study also did not simulate
night time conditions when no lights
were illuminated or occasions when the
occupant left on vacation. Finally, the re-
searcher was the occupant in the pilot
study and this may have also introduced
bias.

The activity zone scores and overall
scores generated by the pattern analysis
component may provide a compact set
of indicators that can help a caregiver de-
termine if an occupant’s pattern of activ-
ity is normal or whether there is a cause
for concern. However, this concept still
needs to be proven through more in-
depth clinical trials with input from pro-
fessional caregivers.

CONCLUSION

The SmartHouse project'* considered be-
havioural patterns based on the time in-
terval that events occurred (presence
probabilities), while the MavHome pro-
ject'® looked for deviation from patterns
with missing events, extra events, or
changes in regularity (frequency probabil-
ities). By including both these aspects in
the calculation of activity zone scores,
the health monitoring system presented
here has the ability to give a more holist-
ic representation of an occupant’s ongo-
ing state of well-being.

Some of the main items identified for
future work include the following: (i) Im-
prove reliability and robustness of the
vision system in identifying the occu-
pant under varying light conditions; (ii)
Extend the pattern analysis compon-

ent’s capability to also be able to ana-
lyze trends over a longer period of time
to detect a more gradual decline in activ-
ity over several weeks or months; (iii) In-
corporate the ability to automatically
learn the value of the threshold (distin-
guishing normal from abnormal activity)
that is required for each individual
through the use of decision-theoretic
planning algorithms (e.g. partially ob-
servable Markov decision pro-
cesses—POMDPs); and (iv) Identify how
declines in health effect patterns in
ADL.

Once the system is considered robust,
clinical in-field trials need to be under-
taken to determine the training period
necessary to characterize an occupant’s
normal pattern of activity. To reduce the
training period, approximate values can
be used to initialize the system based
on the individual’s living pattern charac-
teristics. These values would need to be
determined from future work in clinical
trials with real occupants.

Furthermore, it is believed that the
scores generated by the health monitor-
ing system can be correlated to clinical
tests as a measure of functional health.
As part of the system validation pro-
cess, the scores generated by the
system should be compared to timed
performance tests done in clinics. Func-
tional health trends identified by the
system during clinical trials should also
be compared with models of functional
decline to see if they correlate with the
Death, Terminal Illness, Frailty, Organ
Failure models identified by Lunney et
al.”°.

The indicators developed in this study
could help to identify changes in the
health of an occupant early, hence im-
proving the likelihood of a successful in-
tervention. This could give the occupant
a better sense of autonomy and inde-
pendence, while still providing a greater
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measure of safety. An accurate machine
vision and pattern analysis system that
can automatically capture and analyze
data about an occupant’s pattern of activ-
ity, in combination with an appropriate re-
sponse system, could provide an invalu-
able tool to support aging-in-place for
older adults.
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